

Quick Start Guide

IESVE Model Review

IES Virtual Environment

November 2020

Table of Contents

1.	Introduction	3
	Software Engine Validation	3
	Step 1: Installation & Activation of IESVE Software	3
	Step 2: Weather File Directory	4
	Opening an IESVE Model	4
2.	Model Review – Inputs & Outputs Energy Cost Budget 2013 Reports	8
	Custom Hourly Analysis (VistaPro Application)	
	General Navigator Inputs – Integrated Communication/Narrative	
	Geometry	
	Weather	13
	Envelope	
	Internal Gains	
	Miscellaneous Gains (e.g. elevators)	19
	HVAC Systems	20
	Space Heating (Gas & Electricity)	22
	Space Cooling	
	Fans Interior	27
	Heat Rejection	
	Pumps	29
	DHW (Gas & Electricity)	
3.	Resources	31
	User Guides	
	Technical Support	
	Knowledge Base	

Table of Figures

Figure 1: IESVE Software Download	Error! Bookmark not defined.
Figure 5: IESVE Software Landscape	5
Figure 6: IESVE Version	5
Figure 7: IESVE Model Extract	6
Figure 8: IESVE Archive Project	6
Figure 9: IESVE Project Directory	7
Figure 10: ECB Report	9
Figure 11: Savings By Design Script	
Figure 13: Customized Analysis with the VistaPro Application	
Figure 14: IES Navigator with Notes for Reviewer	
Figure 15: Proposed/Baseline Model Viewer	
Figure 18: Building Envelope Assignment Review	
Figure 19: Model Constructions Review	
Figure 20: Glazed Assembly Characteristics	
Figure 21: Opaque Construction Assembly Characteristics	
Figure 22: Input Data Visualization	
Figure 23: Proposed/Baseline toggle for Internal Gains Review	
Figure 24: Tabular Data of Space Internal Gains Inputs	
Figure 25: Miscellaneous Energy Consumption Review	
Figure 26: Opening an HVAC File in ApacheHVAC	
Figure 27: HVAC File Review	
Figure 29: Radiant Heating Units Input Review	
Figure 30: Heating Coil Review	
Figure 31: Hot Water Loop Review	
Figure 32: Heating Equipment Efficiencies and Performance Curve Data	
Figure 33: Radiant Cooling Units Input Review	
Figure 34: Cooling Coil Review	
Figure 35: Chilled Water Loop Review	
Figure 36: Water Cooled Chiller Review - Efficiency and Performance Curve Data	
Figure 37: Air Cooled Chiller Review - Efficiency and Performance Curve Data	
Figure 38: DX & Unitary Cooling Equipment Review - Efficiency and Performance	Curve Data 26
Figure 41: Fan Input	
Figure 42: Fan Output	
Figure 43: Cooling Tower Inputs	
Figure 44: Fluid Cooler Input (as Heat Recovery)	
Figure 45: Pumps Input	
Figure 46: Pumps Output	
Figure 47: DHW in ApacheHVAC	
Figure 48: DHW Inputs including Solar Hot Water Pre-heat	

1. Introduction

This quick start guide assists a reviewer in evaluating compliance with an IESVE model.

Software Engine Validation

The <Virtual Environment> has been assessed against a number of global standards, including ASHRAE Standard 140. IESVE is fully validated under ASHRAE Standard 140 and have published the results for all current versions. For more information about software validations and approval, as well as copies of ASHRAE Standard 140 results, please visit <u>http://www.iesve.com/software/software-validation</u>. Additionally, IESVE is approved by the US Department of Energy for Federal Incentives – IRS Code 179D.

Step 1: Installation & Activation of IESVE Software

You will receive an email with instructions on how to download the current version of the <Virtual Environment> software. This will contain a link that gives access to the software and full instructions on how to download and install.

To request keys simply run the software and click through help >> request licence keys and enter your details, leave activation code field blank and choose action: request free trial and click send request.

Once the request is sent, the IES Keys team will process the request and send out a confirmation email. Follow the directions within the email to activate the software. For additional support, email the IES Keys team at keys@iesve.com. For any single-location network license access, please see the following URL for installation details http://www.iesve.com/software/download/requesting_licence_keys.pdf.

Multiple versions of IESVE can be supported simultaneously and all older versions of IESVE software are available for download at the URL: <u>http://www.iesve.com/software/download/ve-for-engineers/archive</u>. When opening older software versions, the DLL files will need to be registered before that older version can be opened. To do this, run the **IESFIX.exe** from the installations 'apps' folder.

Step 2: Weather File Directory

To perform analysis in IESVE, it is also necessary to install the appropriate weather files and design day files (*.epw and *.ddy) should be copied to the following location:

C:\Program Files (x86)\IES\Shared Content\Weather

🖌 📜				
File	Home Share View			
	🗸 🛧 📙 🗦 This PC 🕻 OS (C:) 🔻 Program Files (x86) 🗧 IES 🔻 Shar	ed Content > Weather		
1 0	Name	Date modified	Туре	Size
	USA_FL_Orlando.Intl.AP.722050_TMY3.ddy	20/06/2018 09:03	DDY File	29 KB
	USA_FL_Orlando.Intl.AP.722050_TMY3.epw	20/06/2018 09:03	EPW File	1,587 KB
📕 L	USA_FL_Miami.Intl.AP.722020_TMY3.ddy	20/06/2018 09:02	DDY File	29 KB
📑 C	USA EL Miami Intl AP 722020 TMY3 epw	20/06/2018 09:01	EPW File	1.612 KB

Figure 1: Weather File Directory

Opening an IESVE Model

Once IESVE Software has been opened, a number of licensed Applications should be shown (see section 01 below). To open an IESVE model, first save the model file(s) to your local directory.

Figure 2: IESVE Software Landscape

IES <Virtual Environment> model files are most commonly shared in an archive, or cabinet file (*.cab). Before opening the archived model, it is important to note which version of IESVE is installed and in which version the archived model was created. To determine which version of IESVE is installed, simply select **Help** -> **About VE** within the software menus at the top of the screen to generate the following:

Figure 3: IESVE Version

To determine the version in which the archived model was created. Most archived model files will be named to include the software version, either at the beginning or end of the file name. For example, a file named "[VE2016]_Example Project.cab" was created in IESVE 2016. Models created in older software versions may be opened newer software versions, but newer models cannot be opened in older versions. Opening an older model in a newer version of the software requires upgrading the model and is not recommended when reviewing a model. Multiple software versions may be installed on a single computer at the same time.

Once the version of the software and the version of the archived model are aligned, open the archived model by going to **File** -> **Archive** -> **Extract** as shown below:

File Edit View Tools ModelIT	Draw Selection	Settings Help
New Project	Ctrl+N	• 📌 🔍 🔍 🕺 😫
Open Project	Ctrl+O	Blue 🔻 Laye
Save Project Save Project As	Ctrl+S	
Import	+	
Export As	+	
Export results to copy of existing	•	
Archive	۱.	Create
Print		Extract
1 Example.mit		Current Project

Figure 4: IESVE Model Extract

Select the model archive file (*.cab) and choose a location for extracting the model files:

Extract an A	rchived Project	×
	Extract project from archive Project archives (.cab files) are single compressed files that contain all the VE project data. Archives provide an easy project backup and transfer (e.g. email) facility.	
Select the a	archive to be extracted:	
C:\VE-Pro	jects\Example\Backups\2018-06-14T150129 Example [VE2018].cab	Browse
Select a loc	ation to extract the selected archive to:	
C:\VE-Pro	jects	Browse
Load projec	ct if successfully extracted V OK C	Cancel

Figure 5: IESVE Archive Project

An IESVE models will consist of a model folder containing multiple files and subfolders. The model folder should be saved on the local drive and should not be a subfolder of another model, as this can cause model corruption. Take care in selecting the location for model files, especially if simulations are to be performed.

				_ D X
Computer	r ▶ OS (C:) ▶ VE-Projects ▶ Examp	le ▶	▼ 49 Se	arch Example 🔎
Organize 👻 Include in	library 👻 Share with 👻 Burn	New folder	1	I • 🔟 🔞
🔆 Favorites	Name	Date modified	Туре	Size
	퉬 apache	6/14/2018 3:00 PM	File folder	
🥞 Libraries	퉬 Backups	6/14/2018 3:01 PM	File folder	
Documents	🐌 cfd	6/14/2018 3:00 PM	File folder	
🌙 Music	퉬 Components	6/14/2018 3:00 PM	File folder	
Pictures	퉬 lights	6/14/2018 3:00 PM	File folder	
Videos	퉬 macroflo	6/14/2018 3:00 PM	File folder	
	🕌 Map	6/14/2018 3:00 PM	File folder	
🖳 Computer	📗 Radiance	6/14/2018 3:00 PM	File folder	
	퉬 Reports	6/14/2018 3:00 PM	File folder	
🗣 Network	퉬 suncast	6/14/2018 3:00 PM	File folder	
	퉬 texture	6/14/2018 3:00 PM	File folder	
	퉬 Value	6/14/2018 3:00 PM	File folder	
	퉬 vista	6/14/2018 3:00 PM	File folder	
	Example.mdl	6/14/2018 3:00 PM	MDL File	400 KB
	🖬 Example.mit	6/14/2018 3:00 PM	VE Document	15 KB
	Example.msf	6/14/2018 2:59 PM	MSF File	1 KB
	Example.mtd	6/14/2018 3:00 PM	MTD File	20 KB
	Example.mwf	6/14/2018 3:00 PM	MWF File	1 KB
	process.cpb	6/14/2018 3:00 PM	CPB File	1 KB
	Project Content.db	6/14/2018 3:00 PM	Data Base File	8 KB
	🔮 RoomGroups.xml	6/14/2018 3:00 PM	XML Document	1 KB
21 items				

Figure 6: IESVE Project Directory

Extracting a model archive creates a model folder and all necessary subfolders and files. Any subsequent edits made to the model will be contained with the model folder and will not change the model archive in any way. As such, the same model archive can be extracted any time and produce the same resulting model.

The 8,760 simulation results files are saved in the **vista** folder. There should be one proposed file, often beginning with the letter 'p', and one baseline/standard result file, often beginning with the letter 'b'. The IESVE energy model can be zipped or extracted to a .cab file with or without the results file.

2. Model Review – Inputs & Outputs

Florida 2020 Reports – 90.1 2016 AppG

The generated Florida 2020 - 90.1 2016 AppG report from IESVE is shown below and should be located in the "PROJECTNAME**\Content\Compliance Reports**" directory for each building.

Compliance Forms Florida Comp	IES INTEGRATED ENVIRONMENTAL SOLUTIONS	
Florida Complia	ince Report	
Project Name: A1 Bldg (New Cons., C	Office Occupancy) FL Code	
Project Address: 123 Main Street, , Miami, Florida		Date: 13-Nov-2020
Designer of Record: Designer	Email:	Telephone:
Contact Person: Owner	Email:	Telephone:
City: Miami		Principal Heating Source
Weather Data: USA FL Miami.Intl.AF	Fossil Fuel	
		Electricity
		Solar/site recovered
		Other

Space Summary

Building Use	Conditioned Area (ft²)	Unconditioned Area (ft²)	Total (ft²)	BPF (Table 4.2.1.1)
SPACE: Office - Open plan	22500.0	0	22500.0	0.62
Total/Total Area Weighted BPF	22500.0	0	22500.0	0.62

Advisory Messages

	Proposed Building	Budget	Difference
	Design	Building	Proposed/Budget
Number of hours heating loads not met (system/plant)	0.0	0.0	0.0
Number of hours cooling loads not met (system/plant)	0.0	0.0	0.0
Number of warnings	-	-	-
Number of errors	-	-	-
Number of defaults overridden			

Florida Compliance Report

Project Name: A1 Bldg (New Cons., Office Occupancy) FL Code
Contact Person: Designer Email:

Energy and Cost Summary by Fuel Type*

		Proposed Building		Baseline	Building
	Energy Type	Energy	Energy Cost	Energy	Energy Cost
Regulated Energy		(kBtu/yr)	(£/yr)	(kBtu/yr)	(£/yr)
Lighting	Electricity	19,270.6		19,077.9	
Space heating	Gas	359.1		0	
Space heating	Electricity	0		138.9	
Space cooling	Electricity	24,462.9		85,633.7	
Fans	Electricity	5,733.3		14,194.4	
Heat rejection	Electricity	1,561.5		5,466.0	
Total Regulated Electric Energy		51,028.3	16,118.3	124,510.9	39,189.7
Total Regulated Gas Energy		359.1	45.6	0	0
Total Regulated Energy		51,387.4	16,163.9	124,510.9	39,189.7
Unregulated Energy					
Office equipment	Electricity	28,905.9		27,488.0	
Total Unregulated Electric Energy		28,905.9	9,385.3	27,488.0	9,096.4
Total Unregulated Gas Energy		0	0	0	0
Total Unregulated Energy		28,905.9	9,385.3	27,488.0	9,096.4
Total Energy		80,293.3	25,549.2	151,998.9	48,286.1

Performance Cost Index Target

Variable	Description	Value	Source
BBUEC	Baseline Building Unregulated Energy Cost (£)	9,096.4	Energy and Cost Summary by Fuel Type Table
BBREC	Baseline Building Regulated Energy Cost (£)	39,189.7	Energy and Cost Summary by Fuel Type Table
BBP	Baseline Building Performance (Energy Cost) (£)	48,286.1	Energy and Cost Summary by Fuel Type Table
BPF	Total Area Weighted Building Performance Factor	0.62	Space Summary Table
PCI	Performance Cost Index Target	0.69	[BBUEC + (BBREC × BPF)]/BBP

Compliance Forms | Florida Compliance Report

INTEGRATED ENVIRONMENTAL SOLUTIONS

IES

Telephone:

Energy Summary by End Use*

	Proposed Building		Budget Building		Performance Cost Index (PCI)
	Energy Use	Energy Cost	Energy Use	Energy Cost	Proposed Cost /
	(kBtu/yr)	(£/yr)	(kBtu/yr)	(£/yr)	Baseline Cost
Electricity	79,934.2	25,503.6	151,998.9	48,286.1	0.53
Gas	359.1	45.6	0	0	0
Total ex Onsite Generation	80,293.3	25,549.2	151,998.9	48,226.12	0.53
Total inc Onsite Generation	80,293.3	25,549.2	151,998.9	48,226.12	0.53
'Total inc Onsite Generation' PCI less than or equal to PCI,? (Yes/No)			Yes		

* These results use assumptions for showing compliance during a typical year; actual energy costs may be substantially different.

Figure 7: Florida 2020 - 90.1 2016 AppG report

To populate a new Florida 2020 - 90.1 2016 AppG report, a dialog is launched from IESVE Navigators, see below.

\oplus	Preliminary Data Setup)
\oplus	Envelope Thermo-physical Properties)
\oplus	Space/Zone Thermal Template Data)
\oplus	Room Load Calculations	_	
\oplus	Generate Baseline		
\oplus	HVAC System Selection and Sizing	_ [
\oplus	Other Input Data		
\oplus	Simulations		
\oplus	Thermal Comfort (ASHRAE 55)	? 🛙	
\oplus	Cost		
Θ	Results		
	Open Content Manager Set parameters for 'unmet load hour' temperature tests Thermal Comfort Report Project details	?	1111
	PRM Reports AlA 2030 Challenge		
ſ	⊖ Florida Reports		
	 These reports should be reviewed when the ECB method has been used in the navigator and Florida state compliance is required 		
	Florida Compliance Report		

Figure 8: Florida 2020 - 90.1 2016 AppG report in the Navigator

Custom Hourly Analysis (VistaPro Application)

IESVE software has a dedicated Application (**VistaPro**) for analysis of annual, monthly, daily, hourly and subhourly results. Functionality of VistaPro includes graphical outputs (XY plots, bar charts, range tests of binned data, min/max peak graphs etc.) and data tables (annual hourly tables, monthly totals, etc.). The data for analysis is commonly hourly annual energy simulation results, but can also be design heating & cooling loads, metered data or weather data. The VistaPro landscape image below details how various energy end-uses can be output (graphically or tabulated) and copied (red arrows) to external sources such as MS-Excel.

Figure 9: Customized Analysis with the VistaPro Application

- 1. VistaPro Application
- 2. Results file selection. Note a 'p_' often represents a Proposed design and a 'b_' often represents a baseline/standard design.
- 3. Category of analysis. Note the 'Energy' category selected and 'Energy Breakdown' tab for various energy end-uses and meters
- 4. 8,760 hourly data tables; requires some energy end-uses to be selected.
- 5. Monthly and annual data tables; requires some energy end-uses to be selected.
- 6. Stacked bar-charts of energy end-uses.
- 7. Calendar selection.

Note that while other energy end-uses are shown E.g. exterior lighting and energy generated end-uses are shown in the design, they are excluded from the Savings By Design script & report. The Savings By Design script/report only reads Space Heating Gas, Space Heating Electricity, Space Cooling, Fans Interior, Heat Rejection, Pumps, DHW Gas, DHW Electricity, Interior Lighting, Receptacle, Data Center, Cooking Gas, Cooking Electricity, Elevators, Refrigeration and Process.

General Navigator Inputs – Integrated Communication/Narrative

It is common for an end-user to use a Navigator in IESVE software, to streamline the workflow of a project, from top to bottom. Commonly used IESVE Navigators include IECC and ASHRAE 90.1 workflows, and are available for selection in **Item 01** below. If a notepad icon is colored in (**item 04**), that means that there are explanatory notes within the model, beside that associated action or input, which is normally attempting to communicate the approach taken, or provide details about those specific model inputs, that are assigned to the model. These notes can be valuable to any reviewer, as separate narrative documentation might not be necessary. Various examples (**item 02 – item 07**) are shown below.

Note that usage of an ASHRAE-based Navigator does not mean that the baseline model is an ASHRAE baseline.

Figure 10: IES Navigator with Notes for Reviewer

Geometry

To view model geometry in a 3D viewer, see **item 01** below. Note that all IESVE geometry is spatially aware of its surroundings, local shading and internal adjacencies. In order to confirm model orientation, select **item 02**.

The major advantage of the 3D model is that the architecture (geometry) of the building can provide energy savings against the baseline model. This can come from an optimized orientation, intelligent fenestration placement, external shading devices (e.g. overhangs) and well-daylit spaces with integrated daylight controls.

Figure 11: Proposed/Baseline Model Viewer

There are two model approaches for comparing a proposed and standard (baseline) model.

- Host the two models in one model file. This is the most common approach, so if a Title 24 baseline model needs to be viewed, go to the View menu and select PRM Baseline. Note that the "PRM Baseline" geometry can represent any Baseline model (e.g. Title 24, ECB, etc.) and will have been modified by the user to represent the appropriate baseline code.
- 2. Separate proposed and standard (baseline) models in two model files. This is less common, but can be common when underfloor systems are being compared.

Weather

Before validating the weather data used for a model, ensure California weather files are accessible within IESVE software by following the process described in the <u>Step 2: Weather File Directory</u> section of this document.

The weather data referenced by a model can be viewed & edited from ApacheLocate (ApLocate). ApLocate can be accessed by double clicking on the globe icon in the bottom right corner of IESVE software and the weather file used for simulations can be seen on the Simulation Weather Data tab within ApLocate:

Figure 12: ApLocate and Simulation Weather File

Envelope

Follow actions 01-05 below to review construction assignments and assemblies for proposed and standard (baseline) models.

Figure 13: Building Envelope Assignment Review

To review any construction assembly, the appropriate construction can be selected and **Edit construction** to review.

construction data	ID	Category	Description		Data source	U value (Btu/h-ft².ºF)	Thickness (in)	Notes etc.		
port all to file	STD EXT2	Roof Light	High Perform	ance Skylight u-0.316 shgc-0.252	Generic	0.337	0.976			
y selected to clipboard	STD ROOF	Roof	× 2013 Roof	in the state of th	Generic	0.032	12.480			
		Deef	Desfe with h	autotice Felicely About Deak land	ACUDAE 00.4	0.042	4.074			
	ASHROUP	Root	 Roors with it 	isulation Entirely Above Deck Insul	ASHRAE 90.1	0.046	4.374			
rom clipboard	STD_INTW	Internal Window	 2013 Interna 	I Window	Generic	0.735	0.000			
	STD_PART	Internal Partition	 2013 Interna 	I Partition	Generic	0.327	2.953			
	STD_FLO1	Ground/Exposed Floor	2013 Expos	ad Floor	Generic	0.039	10.559			
ex construction	ASHFLOOR	Ground/Exposed Floor	~ Wood-Joists	Floor; Cavity Depth: 5.50 in.Wood	ASHRAE 90.1	0.024	24.250			
cate construction	STD_EXT1	External Window	~ High Perform	nance Glazing u-0.3 shgc-0.25	Generic	0.320	0.945			
construction(s)	STD WAL1	External Wall	~ 2013 Extern	al Wall	Generic	0.046	8.224			
construction(s)	ASHWALL	External Wall	v Steel Framin	a at 24 in OC (R-15 Ins. + R-25.0	ASHRAE 90.1	0.029	8.625			
e construction(s)	STD DOOD	Deer	2012 Deer	g at 2 m oo (the mat of the com	Conorio	0.405	1.457			
e unused project constructions	STD_DOOR	Dool	* 2013 D001		Generic	0.400	1.407			
e unused project materials										
system materials										
system constructions										
and a ball of a										
User Guide_	ssigned (therm	al) Assigned (non-t	(hermal)	External Wall TSC Wall	Internal Partitio	n Groun	d/Evnoced Floor	Roof	Active	Thermal

Figure 14: Model Constructions Review

An example glazed assembly is shown below, which includes information about u-value (with/without frame), Solar Heat Gain Coefficient (SHGC) and Visible Light Transmittance (VLT). Dynamic shades can be viewed in the **Shading Device** tab below.

Project Construction (Glazed:	External V	Vindow)										_	
scription: High Performance	Glazing u-0).3 shgc-0.25								ID: ST	D_EXT1	Exte	rnal Inte
erformance: ASHRAE V													
Net U-value (including frame):	0.3200	Btu/h·ft²·°F	U-val	ue (glass	only): 0.3000 Bt	J/h∙ft²∙°F	Total sha	ading coeffici	ent: 0.2874		SHGC	(center-pa	ne): 0.2500
Net R-value:	3.3333	ft²·h·°F/Btu	، g-۱	value (EN	410): 0.2596	Vi	isible light norm	al transmittar	nce: 0.7				
Surfaces Frame Shading Device Regulations UK Dwellings													
Outside Inside													
Emissivity: 0.837 Resistance (ft²-h·°F/Btu): 0.170 🖸 Default Emissivity: 0.837 Resistance (ft²-h·°F/Btu): 0.680 🗹 Default													
Construction Layers (Outside to Inside): Project Materials Project Materials													
	Thickness	Conductivity	Angular	Gar	Convection Coefficient	Resistance	Transmittanca	Outside	Inside	Refractive	Outside	Inside	Visible Light
Material	in	Btu in/h ft ² · °F	Dependence	Gas	Btu/h·ft²·°F	ft²·h·°F/Btu	Tansmittance	Reflectance	Reflectance	Index	Emissivity	Emissivity	Specified
Material [STD_EXW1] Outer Pane	in 0.24"	Btu·in/h·ft²·°F 7.349	Dependence Fresnel	-	Btu/h·ft²·°F	ft ² ·h·°F/Btu 0.032	0.242	0.297	0.414	1.526	0.837	Emissivity 0.042	Specified Yes
Material [STD_EXW1] Outer Pane Cavity	in 0.24" 0.47"	Btu·in/h·ft²·°F 7.349 -	Dependence Fresnel	- Argon	Btu/h·ft²·°F - 0.247	ft ² ·h·°F/Btu 0.032 2.419	0.242 -	Reflectance 0.297 -	Reflectance 0.414 -	1.526	0.837 -	Emissivity 0.042 -	Specified Yes -
Material [STD_EXW1] Outer Pane Cavity [STD_INW] Inner Pane	in 0.24" 0.47" 0.24"	Btu·in/h·ft ² ·°F - 7.349 - 7.349	Dependence Fresnel - Fresnel	- Argon -	Btu/h·ft²·°F - 0.247 -	ft ² ·h·°F/Btu 0.032 2.419 0.032	0.242 - 0.783	Reflectance 0.297 - 0.072	0.414 - 0.072	1.526 - 1.526	0.837 - 0.837	Emissivity 0.042 - 0.837	Specified Yes - Yes
Material [STD_EXW1] Outer Pane Cavity [STD_INW] Inner Pane	in 0.24" 0.47" 0.24"	Btu in/h ft ^{2.} °F 7.349 - 7.349	Dependence Fresnel Fresnel	Argon -	Btu/h ft2-0F	ft ² ·h·°F/Btu 0.032 2.419 0.032	0.242 - 0.783	Reflectance 0.297 - 0.072	0.414 - 0.072	1.526 - 1.526	0.837 - 0.837	Emissivity 0.042 - 0.837	Specified Yes Yes
Material [STD_EXW1] Outer Pane Cavity [STD_INW] Inner Pane Copy Paste Insert	in 0.24" 0.47" 0.24"	Btu in/h ft ^{2.} °F 7.349 - 7.349 Delete	Pependence Fresnel Fresnel Flip Ele	- Argon -	Btu/h ft²-ºF - 0.247 -	ft ² ·h·°F/Btu 0.032 2.419 0.032	0.242 - 0.783	Reflectance 0.297 - 0.072	0.414 - 0.072	1.526 - 1.526	Emissivity 0.837 - 0.837	Emissivity 0.042 - 0.837	Specified Yes Yes More Data

Figure 15: Glazed Assembly Characteristics

An example opaque construction assembly is shown below.

💋 Project Construction (Opaque: Ground/Exposed Floor)									-	
Description: Wood-Joists Floor; Cavity Depth: 5.50 in.Wood-Joist Floor with Cavity Insulation (R-21	cription: Wood-Joists Floor; Cavity Depth: 5.50 in.Wood-Joist Floor with Cavity Insulation (R-21 Ins. + R-20.0 Cont. Ins.)								Exte	rnal Internal
Performance: ASHRAE ~										
U-value: 0.0234 Btu/h·ft².ºF Thickness: 24.25" in	Ther	mal mass Cm: 2.0289	Btu/ft ² ·F							
Total R-value: 11.5624 ft ²⁺ /r ⁴ /FBu Mass: 20.3952 lb/ft ² Very lightweight										
Surraces Functional Settings Regulations										
Outside	Inside									
Emissivity: 0.900 Resistance (ft ² ·h·°F/Btu): 0.170 Oefault		Emissivity: 0.900	Resistan	ice (ft²·h·°F/Btu): 0.9	20 Default					
Solar Absorptance: 0.700	Solar A	Absorptance: 0.550								
Construction Layers (Outside To Inside)								System Materials	. Proje	ect Materials
Material	Thickness in	Conductivity Btu-in/h-ft ^{2.} °F	Density lb/ftª	Specific Heat Capacity Btu/Ib·°F	Resistance ft²·h·°F/Btu	Vapour Resistivity (perm·in)^-1	Catego	ŋ	A90.1 Status	% Composite
[SOIL0000] Soil	1.00*	9.000	112.370	0.2986	0.111	0.365	Sands, Stones and Soils		R	
Cavity	12.00*		-		0.180	-	-		R	
[WDSF] Wood subfloor (ASHRAE)	0.75*	0.798	40.578	0.2866	0.940	0.292	Timber		R	
Composite layer:	5.50"	0.286	1.998	0.1999	0.000	-	-		R	
Insulated Cavity	5.50"		1.998	0.1999	21.000					91.0000
Frame	5.50"		1.998	0.1999	6.880					9.0000
[CNTN0000] CONTINUOUS INSULATION R-20.0	4.00*	0.200	1.500	0.2000	20.000	0.073	Insulating Materials		R	
[CRPT0000] Carpet and pad (ASHRAE)	1.00"	0.814	84.951	0.2866	1.229	0.165	Carpets		R	
Copy Paste Cavity Insert Add Delete Filip Composite										•
Condensation Analysis Derived Parameters									ОК	Cancel

Figure 16: Opaque Construction Assembly Characteristics

An alternative review of constructions assignment can be made in the Apache Application or the ASHRAE 90.1 Application, using the **Input Data Visualization** tool, as shown below. In this example, **Constructions** is the category and variable selected to be visualized.

Figure 17: Input Data Visualization

Many other variables can be visualized in this way, including internal gains (e.g. Lighting power density) and room conditions (e.g. heating setpoints).

Internal Gains

To review any occupancy gains, receptacle equipment (Plug Loads), lighting gains, refrigeration, cooking, data center gains, other process gains; schedules and diversity factors of internal gains for proposed and standard (baseline) models, open the **Tabular Space Data** dialog.

Figure 18: Proposed/Baseline toggle for Internal Gains Review

Action item 04 above will launch the **Tabular Space Data** dialog, as shown below.

Tabular Space Data - Space Data																		-		×
Export Space Data	🕕 The	Propose	d Building is currently active.																	×
Export to file Copy data from all tabs	Spi	ice ID	Space Name	Space Sub Type	Gain 7 Reference	Gain 7 Inpu Mode	ıt	Gain 7 Occupancy (ft²/person)	Gain 7 Occupancy (People)	Gain 7 Max. Sensible Gain (Btu/h)	Gain 7 Max. Sensible Gain (Btu/h-person)	Gain 7 Max. Latent Gain (Btu/h)	Gain 7 Max Latent Gain (Btu/h-person	Gain 7 Variat Profile	tion	9	Gain 7 Diversity Factor	Gai profile for lor	n 7 Allow to satura ads analys	ite sis
Copy data from current tab	L10	00001	L1 Cellular Office 02 - SE	Room ~	SPACE: Office - Enclosed - People	ft?/person	\sim	200.000	1.125	281.250	250.000 🗹	225.000	200.000	BLDG: Office - F	People	~	1 🗗	Yes		~
	L10	00002	L1 Cellular Office 03 - NE	Room ~	SPACE: Office - Enclosed - People	ft²/person	\sim	200.000	1.125	281.250	250.000 🗹	225.000	200.000	BLDG: Office - F	People	\sim	1 🗄	Yes		~
Import Space Data	L10	00003	L1 Cellular Office 04 - NW	Room ~	SPACE: Office - Enclosed - People	ft²/person	\sim	200.000	1.125	281.250	250.000	225.000	200.000	BLDG: Office - F	People	~	1 🗄	Yes		~
😅 Import from file	L10	00004	L1 Conference 01 - South	Room ~	SPACE: Conference/ Meeting/ Mul	ft²/person	\sim	40.000	13.1251	3281.269	250.000 🗹	2625.015	200.000	BLDG: Office - F	People	\sim	1 🗄	Yes		\sim
Paste from clipboard	L10	00005	L1 Conference 02 - South	Room ~	SPACE: Conference/ Meeting/ Mul	ft²/person	\sim	40.000	13.1251	3281.269	250.000	2625.015	200.000	BLDG: Office - F	People	~	1 🛛	Yes		~
	L10	00006	L1 Open Plan Office - East	Room ~	SPACE: Office - Open plan - People	ft²/person	\sim	200.000	1.5	375.000	250.000	300.000	200.000	BLDG: Office - F	People	\sim	1 🗄	Yes		\sim
Actions	L10	00007	L1 Open Plan Office 01 - North	Room ~	SPACE: Office - Open plan - People	ft²/person	\sim	200.000	2.625	656.250	250.000	525.000	200.000	BLDG: Office - F	People	\sim	1 🛛	Yes		~
 Deselect unmarked spaces 	L10	80000	L1 Open Plan Office 02 - North	Room ~	SPACE: Office - Open plan - People	ft²/person	\sim	200.000	2.625	656.250	250.000	525.000	200.000	BLDG: Office - F	People	\sim	1 🛛	Yes		~
Select all spaces	L10	00009	L1 Open Plan Office - West	Room 🗸	SPACE: Office - Open plan - People	ft²/person	\sim	200.000	1.5	375.000	250.000	300.000	200.000	BLDG: Office - F	People	\sim	1 🛛	Yes		\sim
 Assign marked spaces to a group 	L10	A0000	L1 Open Plan Office 01 - Interior	Room ~	-									-			-		-	
	L10	0000B	L1 Open Plan Office 02 - Interior	Room 🗸	-	-				1.1				-			-		-	
Tools	🗹 L10	00000	L1 Cellular Office 01 - SW	Room 🗸	SPACE: Office - Enclosed - People	ft²/person	~	200.000	1.125	281.250	250.000 🗹	225.000	200.000	BLDG: Office - F	People	×	1	Yes		~
Tools ⑦ View User Guide ⑦ Refresh ℃ Manage filters ✿ Configure tabls and columns 12 rooms No filters active	× Gene	eral ×	Space Conditions × System	a x Intern	€ anal Gains* × Air Exchanges	n r person		200300	1.143	201.230	1.425 equa 0.950- 0.475- 0.000- -0.475- 0	225000	8 10 12 1 Time of D	14 16 16 20 22	24					•

Figure 19: Tabular Data of Space Internal Gains Inputs

Internal lighting gains (W/ft²) may be automatically split into separate daylight zones, depending upon model geometry (sidelit areas, skylit areas, etc.) and may be controlled by dynamic daylight sensors, linked to the RadianceIES daylight simulation engine.

Miscellaneous Gains (e.g. elevators)

To review miscellaneous energy consumption (elevators, exterior lights, etc.) select the **Miscellaneous Energy Consumption** feature.

Figure 20: Miscellaneous Energy Consumption Review

Miscellaneous energy consumption types may have alternatively been setup through the **Building Template Manager** / Internal Gains from the **Tools** menu.

HVAC Systems

To review the mechanical systems for both proposed and standard building models, go to **ApacheHVAC** and open the "**Baseline**.asp" file and/or the "**Proposed**.asp" file.

Figure 21: Opening an HVAC File in ApacheHVAC

The same can be done for the "**Proposed**.asp" file.

There are a number of autosized prototypical HVAC systems available in ApacheHVAC for the proposed case. They include, though are not limited to: Package Terminal Air-Conditioners, Package Terminal Heat Pumps, Package Single-Zone Systems, Package Single-Zone Heat Pumps, VAV with Reheat, Indirect/Direct Evaporative Cooling VAV systems, VAV with Parallel Fan-Powered boxes, VAV with Series Fan-Powered boxes, Natural Ventilation or Mixed-mode VAV systems, VAV single-fan dual-duct systems, VAV dual-fan dual-duct systems, Underfloor air with Displacement Ventilation, Advanced VAV systems, Constant-volume reheat systems, with nighttime airflow setback, demand-controlled ventilation, Dedicated Outside Air Systems with Fan-coil units, Dedicated Outside Air Systems with water-loop heat pumps, DOAS with Active chilled beams (2 pipe), DOAS with Active chilled beams (4 pipe), Radiant Heating/Cooling panels with DCV, heating & ventilation only, DOAS with Air-source VRF, DOAS with Water-source VRF and any customizable HVAC system.

Features of any customizable HVAC systems can include airside or waterside economizers, pre-heating and precooling devices, ground-source heat pumps, solar HW heat recovery, solar Trombe walls, earth tubes and windcatcher devices.

Once the HVAC system is open in ApacheHVAC, the name of the HVAC file is shown (tag 02) below and the name of the system type (tag 03) is also shown. ApacheHVAC is a component-based HVAC user-interface, whereby any component (fan, coil, etc.) can be viewed by double-clicking in order to review the performance parameters of the HVAC system components.

Figure 22: HVAC File Review

Space Heating (Gas & Electricity)

In **ApacheHVAC**, there are two airside views for space heating equipment:

- 1. Radiant heating components (e.g. radiant panels)
- 2. Convective heating components (e.g. hot water coils)

Radiant heating equipment on the airside view can be reviewed by double-clicking a room component:

				DOAS + F	CU - Sys 9 - CHW co	oling, HW heat, 4-	pipe
diator				×	N		
ference: Scalable diator type: at source: it water loop circuit: wher of units: (Specified flows are ow (gpm) at max sens sign supply temperatu	heating panels for any zone using Rad Ht panel - scalable 4-W un HWL - Condensing Boiler, 50-C 5 Primary for one unit) and DD Temp (*F): ure (*F):	4-XW type (scale via number k (13.6 ··· wit7, 2: ··· 0.69 A. 0.69 A. Design ro Design ro Design ro Design ro Design ro	Link: Rad/conv heat device, dy for autosizing. som air temp (*F): som radiant temp (*F): eating load (kBtu/h): ater delta T (*F):	/panel V Re-apply 660.00 A 660.00 A 3.551 A 39.600 1.25			
e hot water loop supp ime switch profile on continuously On/off setpoint con	by temperature	AND/OR Con Select AND: 0	OR: 0	Edit			
Sensor location: Sensed variable: Midband variation: Offset from setpo Main SP +/- offset (' Proportional Bandwi	Inter Relat oint (fraction of throttling range): "F): 70.00 Setback +/- dth ("F):	ha × L1 Cellular Offic × Dry-bulb Tempx × eve to Zn/Rm setpoint × 0.25 offiset (*F): 60.00	C 75 70 65 65				en
Max change per time Flow (gpm) at min s Sensor radiant fracti	e step: sensed DB Temp (°F): ion:	0.20 0.290 A	0 2 4 6 8 10 12 1 Time of I	14 16 18 20 22 24 Day			

Figure 23: Radiant Heating Units Input Review

Convective heating equipment on the airside view can be reviewed by double-clicking a coil component:

Figure 24: Heating Coil Review

Both radiative and convective airside components will reference a heat source. This can be electricity (e.g. electric resistance heating coil) or can be Space Heating source equipment plant (e.g. gas furnace, heat pumps, hydronic hot water plant – boilers, etc.). Opening an airside coil will allow the waterside-source to be reviewed. The example below shows two boilers, with a primary/secondary loop configuration and three secondary hot water loops with independent control for heating coils, radiant panels and a DHW tank.

Figure 25: Hot Water Loop Review

Heating equipment performance sets and efficiencies are editable for review:

Figure 26: Heating Equipment Efficiencies and Performance Curve Data

Space Cooling

In **ApacheHVAC**, there are two airside views for space cooling equipment:

- 1. Radiant cooling components (e.g. radiant panels)
- 2. Convective cooling components (e.g. chilled water coils)

Radiant cooling equipment on the airside view can be reviewed by double-clicking a room component:

nined centry	X J - Sys 9 - CHW cooling, HW heat, 4-pipe FCUs,
aference: Scalable cooling panels for any zone using 1-W std. type (stall hiled ceiling type: Rad Clg panel 1-W unit (3.412 kBtu/h), 10 v ooling source: One Electric Water-Cooled Chiller with VSC v umber of units: 1.00 A (Specified flows are for one unk) 0.520 A eigin supply temperature (*F): 5.000 A solider to op supply temperature v Time switch profile V	cale via numb Link: Rad/conv cool device/panel Re-apply Autosizing Autosizing. Design room rait stemp (*f): 74.00 A Design room raint stemp (*f): 74.00 A Design room radiant temp (*f): 2.662 Design room radiant temp (*f): 2.662 A Design room radiant temp (*f): 1.15 AND/OR Connections AND/OR Connections A Design room radiant temp (*f): 1.15
On/off setpoint controller Proportional flow controller Proporti	onal temperature controller
Sensor location: Interna V L1 Cellulai Sensed variable: Dry-bulb 1	Temps ~ 82.5

Figure 27: Radiant Cooling Units Input Review

Convective cooling equipment on the airside view can be reviewed by double-clicking a coil component:

Figure 28: Cooling Coil Review

Both radiative and convective airside components will reference a cooling source. This can be electricity (e.g. electric evaporative-cooling spray chamber) or can be Space Cooling source equipment plant (e.g. DX cooling, heat pumps, dedicated waterside economizer, hydronic chilled water plant – chillers, etc.). Opening an airside coil will allow the waterside-source to be reviewed. The example below shows two

Figure 29: Chilled Water Loop Review

Water Cooled Chiller equipment performance sets and efficiencies are editable for review:

Figure 30: Water Cooled Chiller Review - Efficiency and Performance Curve Data

Air Cooled Chiller equipment performance sets and efficiencies are editable for review:

Figure 31: Air Cooled Chiller Review - Efficiency and Performance Curve Data

DX Cooling & Unitary Cooling equipment performance sets and efficiencies are editable for review:

	Air-to-air hea	at pump			×
	Reference:	PSZ-HP >135 k8tu/h <240 k8tu/h EERnf 10.65 (Cooling - I	EER 9.1 Heating - 0	COP 3.1 per 90.1-2016 Ap	ppG w far
	Cooling and he	eating energy meter:		Electricity: Meter 1	~
	Operational m	odel:		AAHP model descri	iption
Air-to-air heat pumps (types) X FS2.19-63 Bits/h EEP/13.03 (Cooling-EER A.B) Reading-1697-6.5 pr.6 3-2016 AppC or for PS2.19-135 Bits/h EEP/12.17 (Cooling-EER A.B) Reading-1697-6.5 pr.6 3-30 pr.6 3-30 pr.6 PS2.19-135 Bits/h EEP/13.03 (Cooling-EER A.B) Reading-1697-0.3 pr.6 3-30 pr.6 30-30 pr.6 30-	Heat pump e Minimum Suppleme Maxim Suppleme Heat reje Heat reje Heat reje Cranki Remb Maxim Defrost st Resist Defrost st Resist Defrost st	Reference condition Performance curves part-load ratio for continuous part-load ratio from the purps operations: unit obdoor temperatures for hask purps operations: unit obdoor temperatures for hask purps operations: unit obdoor temperatures for supplemental heat operation control of supplemental heat locks out it's compression (for poplemental heat only below min. outdoor HP operating temp convolvequations fine listeric bup H about (ER): convolvequations file listeric bup	Electric-Resistant integrated) o (non-integrated) Electricity: Mete Reverse-cycle Timed Electricity: Mete]
				ОК	Cancel

Figure 32: DX & Unitary Cooling Equipment Review - Efficiency and Performance Curve Data

Fans Interior

In ApacheHVAC, the Fan inputs are editable for review by opening the fan components.

Figure 33: Fan Input

In **VistaPro**, total or individual Fan outputs can be reviewed by selecting the appropriate simulation result file and fan(s) components.

Figure 34: Fan Output

Heat Rejection

In **ApacheHVAC**, the Heat Rejection inputs are editable for review by opening the waterside view, see below. Note there may also be some Heat Rejection inputs associated to non-waterside components, e.g. DX cooling.

Figure 35: Cooling Tower Inputs

There is also a possibility of some Heat Rejection coming from a pre-cooling device, as below.

Figure 36: Fluid Cooler Input (as Heat Recovery)

Pumps

In **ApacheHVAC**, the Pumps inputs are editable for review by opening the Pumps components in the Waterside view. The pumps may exist on both heating and cooling systems.

Figure 37: Pumps Input

In **VistaPro**, total or individual Pumps outputs can be reviewed by selecting the appropriate simulation result file and pump(s) components.

Figure 38: Pumps Output

DHW (Gas & Electricity)

In **ApacheHVAC**, the DHW inputs are editable for review by opening the DHW Loop from the toolbar below. The DHW (Gas & Electricity) on models previous to IESVE-2018 will likely be set in the **Building Template Manager** (Tools menu).

Figure 39: DHW in ApacheHVAC

Service hot water - DHW Systems			×
Proposed DHW System 4 2 Condensing Bollers, 110-140-F SWT (OA reset), 35-F e DHW pre-heating equipment SDHW pre-heat CHR HX	DHW design municipal/mains cold water inlet temperature: DHW municipal/mains cold water inlet temperature:	Image: Solution of the second seco	
DHW Dranches DHW Dranches DHW equipment DHW equipment Hell W Zones Humanigned DHW Zones	DHW System Raference: Proposed DHW System DHW model: Explicit - HWL HK and CHR Hot water loop: DHW design supply temperature set point: DHW supply temperature set point: DHW pre-heat using: Condenser Heat Recovery (CHR) Solar Water Hei	Autosize Sizing status: Condensing Boilers, 110-140-F SWT Constant Constant (140.00 %	Solar Water Heater X Reference: SWH for DHW pre-heat
	DHW branch Reference: DHW branch - default DHW heat exchanger (HS) location on HWL: HWL.DHW HX design parmeters DHW subch Hwy table: 0.16 gpm A Load-side ente	Secondary loop DHW	Callector type: Parabolic Panel Atimuth angle of collector tube (* clockwise from north) 00.000 Derived parameters Reflector (one collector unit): Length (ft) 10°-0.000" Focal Length (ft) 1°-0.000"
	Source-side flow rate: 0.41 gpm Load-side law Approach: 0.00 eF Source-side er Effectiveness: 1.00 Source-side law	ing temperature: 40.00 °F tering temperature: 140.00 °F aving temperature: 105.00 °F	Collector units per row (in series) 3 * No of rows (in parallel) 1 * Tube extensions (ft) (one unit) 0°-7874 Intercept factor 0.990 Absorber tube radius (ft) 0°-6887 Absorber tube absorptance 0.950 More self-tuber 0.950 Case tube transitions 0.850
	Load and mix Hx Capacity: 7.19 kBu/n A uniet temperat DHW delivery efficiency: OHW storage tank OHW periculation OHW pump Torkk Revination Pump OHR reschaet delivin parameters for Suttern SWI gret-heat	for System	Total fluid flow (ch/(t ⁺) 0.164 Pump power (kBu/h) 0.682 Fluid specific heat capacity (Bu/lb*F) 0.979 Heat excharge effectiveness 0.400 Tank volume (t ⁺) 35.315 Design tank heat loss (kBTU/(t ⁺ dy/)) 0.725
	Reference: SWH for DHW pre-heat	Edit	Pump Meter Electricity; Meter 1 ~ Order loss coeffits per unit aperature area:
< >>			OK Cancel
		ОК	Cancel

Figure 40: DHW Inputs including Solar Hot Water Pre-heat

3. Resources

Links and references to several resources have been provided in this guide. A summary of those references is provided here:

• IES software engine validation resources

http://www.iesve.com/software/software-validation

• IES <Virtual Environment> software download http://iesve.com/software/download

• IES <Virtual Environment> software license request http://www.iesve.com/software/download/requesting_licence_keys.pdf

- IES Content Store (for supplemental scripts) http://www.iesve.com/content-store/
- IESVE youTube videos

https://www.youtube.com/user/IESVE

IES offers many additional resources that may be useful when evaluating project specifics within a model. User guides describe the details of the various applications within the VE, explaining how features work and describing how calculations are performed. The IES Knowledge Base contains answers to our Frequently Asked Questions as well as guidance documents (like this one!) on a wide range of VE and modeling related topics. Finally, our global technical support team is available to answer any software related questions.

User Guides

User guides for the applications within the <Virtual Environment> can be found in a searchable, online format at https://help.iesve.com/ve2018/.

To download PDF copies of older User Guides (prior to the release of VE 2018), visit <u>http://www.iesve.com/support/userguides</u>.

Technical Support

The IES Support Team is happy to assist with any question regarding the <Virtual Environment>. They can be contacted via email at support@iesve.com or via phone at 617-502-2085 (choose option 1 for software support). When sending email queries about a specific project, please attach a model archive (the *.cab file) so the team can assist you more effectively.

Knowledge Base

The full breadth of IES resources and product supporting content is searchable within the Knowledge Base at http://www.iesve.com/support/knowledgebase.

An online community of VE users share experiences and answer software questions on the <u>IES Forums</u> and the <u>IES VE LinkedIn Group</u>.

EUROPE

Glasgow Head Office Helix Building, Kelvin Campus West of Scotland Science Park Glasgow G20 0SP UK T +44 (0)141 945 8500 E sales@iesve.com

Dublin

4th Floor, Castleforbes House Castleforbes Road Dublin 1, Ireland T +353 (0) 1875 0104 E sales@iesve.com

NORTH AMERICA

Atlanta

834 Inman Village Parkway NE Suite 230, Atlanta GA 30307 T +1 (404) 806 2018 E consulting@iesve.com

ASIA

Pune Dhananjay Plaza, II Floor, Plot No. 21, Pune- Mumbai Highway Near Lalani Quantum / Home Decor, Bavdhan, Pune 411 021, India T +91 (020) 6560 2848 E india@iesve.com

AUSTRALIA

Melbourne Level 1, 123 Camberwell Road Hawthorn East, Melbourne Vic 3123, Australia T +61 (0) 3 9808 8431 E support@iesve.com

www.iesve.com