

Methods and Economics of Achieving Florida's ERI Compliance

Rob Vieira July 20, 2016

Objectives

- Calculate ERIs and Florida Code e-Ratios for typical homes for three scenarios for three Florida cities
 - 1. Using the required 2009 IECC backstops required by Section R406 of the 2015 IECC
 - 2. Using 2015 IECC prescriptive measures
 - Using high efficiency features capable of reaching the Florida required ERI of 58
- Calculate the amount of PV required to meet ERI of 58 for first two scenarios
- Calculate economics for reaching ERI of 58 for all scenarios

Cities

- For this presentation
 - Jacksonville
 - Orlando
 - Miami
- Full <u>Phase I draft report to NRDC</u> has 11 cities across the nation and includes Miami and Orlando.

All Florida Home Characteristics

Floor area: 2000 square feet

Volume: 18,000 cubic feet

Window Area: 300 square feet (15% WFA)

Slab-on-grade frame construction

- Pipe insulation of R-3 (mandatory R406)
- All Electric
- Mechanical Ventilation per ASHRAE 62.2-2013

Homes Simulated

 Values for Jacksonville and Orlando are always the same. Values for Miami, if different, are in ().

Bldg	Ceil. R	Wall R	Fens. U	Fens. SHGC	ACH 50	Duct R	Duct Qn	Heat HSPF	Cool SEER	Air Hand.	Hot Water	Lght % HE
2009 IECC	30	13	0.65 (1.2)	0.30	7	8	.08 Attic	8.2	14	Std	EF 0.95	50%
2015 IECC	38 (30)	13	0.40 (0.50)	0.25	5	8	.04	8.2	14	Factory Sealed	EF 0.95	75%
High Eff	38+ RBS	13	0.40	0.25	5	8	.01	8.6 (8.4)	15.5 (15)	Factory Sealed	EF 0.95	100%

Homes Simulated

 Values for Jacksonville and Orlando are always the same. Values for Miami, if different, are in ().

Bldg	Ceil. R	Wall R	Fens. U	Fens. SHGC	ACH 50	Duct R	Duct Qn	Heat HSPF	Cool SEER	Air Hand.	Hot Water	Lght % HE
2009 IECC	30	13	0.65 (1.2)	0.30	7	8	.08 Attic	8.2	14	Std	EF 0.95	50%
2015 IECC	38 (30)	13	0.40 (0.50)	0.25	5	8	.04 Attic	8.2	14	Factory Sealed	EF 0.95	75%
High Eff	38+ RBS	13	0.40	0.25	5	8	.01	8.6 (8.4)	15.5 (15)	Factory Sealed	EF 0.95	100%

Homes Simulated

 Values for Jacksonville and Orlando are always the same. Values for Miami, if different, are in ().

Bldg	Ceil. R	Wall R	Fens. U	Fens. SHGC	ACH 50	Duct R	Duct Qn	Heat HSPF	Cool SEER	Air Hand.	Hot Water	Lght % HE
2009 IECC	30	13	0.65 (1.2)	0.30	7	8	.08 Attic	8.2	14	Std	EF 0.95	50%
2015 IECC	38 (30)	13	0.40 (0.50)	0.25	5	8	.04 Attic	8.2	14	Factory Sealed	EF 0.95	75%
High Eff	38+ RBS	13	0.40	0.25	5	8	.01 Cond Space	8.6 (8.4)	15.5 (15)	Factory Sealed	EF 0.95	100%

Jacksonville

Photo by Rob Vieira

Jacksonville Comparison

E-Ratio is July 1, 2016 calculation

Jacksonville Comparison

E-Ratio is July 1, 2016 calculation

Jacksonville Comparison

E-Ratio is July 1, 2016 calculation

Solar quantity assumes south facing roof slope of 22.5 degrees with no shading $FSEC^{\circ}$

Economics

- Each upgrade priced using data in FSEC report to NRDC: <u>Cost</u>
 <u>Effectiveness of Energy Efficiency and On-Site Photovoltaic Power</u>
 <u>for 2015 IECC Energy Rating Index (ERI) Compliance</u>
- Rooftop solar price of \$3.50 per Watt from <u>PV-magazine.com</u> as national 4th quarter 2015 value. Subtracting 30% income tax credit (ITC) for net cost of \$2.45.
- \$0.1107 electric rate as Florida residential average for April 2016 from EIA
- Calculated
 - \$ Savings per year (save/yr)
 - Life Cycle Costs (LC Cost)
 - Life Cycle Savings (LC Save)
 - Net Present Value (NPV)
 - Savings to Investment Ratio (SIR)

Economics – Rates Used

- 30 Year Life-Cycle-Cost Analysis
- Assumed Rates (per RESNET):

General	Inflation Rate:	2.53%
— Ucliciai	IIIIIaliuii Nale.	2. 33/0

Discount Rate: 4.53%

Mortgage Interest Rate: 5.42%

Energy Inflation Rate: 4.18%

Down Payment Rate: 10.0%

Economics of Achieving ERI of 58

Jacksonville Comparison

PV at \$3.50 – 30% tax credit Savings per year over 2009 IECC baseline home

Savings to Investment Ratio (SIR) Achieving ERI of 58

Roof Area Required to Get to Net Zero

Assumes south roof slope of 22.5°

- Assumes no shading
- Jacksonville example

House	Square feet roof required at 10% PV efficiency	Square feet roof required at 20% PV efficiency
2009 IECC w. 8.3 kW PV	765	383
2015 IECC w.		
7.5 kW PV High Efficiency w.	689	345
6.6 kW PV	609	304

Orlando

Photo from City of Orlando website

Orlando Comparison

E-Ratio is July 1, 2016 calculation

Solar quantity assumes south facing roof slope of 22.5 degrees with no shading $FSEC^{\circ}$

Economics of Achieving ERI of 58

Orlando Comparison

PV at \$3.50 – 30% tax credit Savings per year over 2009 IECC baseline home

Savings to Investment Ratio (SIR) Achieving ERI of 58

Roof Area Required to Get to Net Zero

Assumes south roof slope of 22.5°

- Assumes no shading
- Orlando example

House	Square feet roof required at 10% PV efficiency	Square feet roof required at 20% PV efficiency
2009 IECC w.		
8.3 kW PV	754	377
2015 IECC w.		
7.5 kW PV	686	343
High Efficiency w.		
6.6 kW PV	607	303

Miami

Photo from City of Miami website

Miami Comparison

E-Ratio is July 1, 2016 calculation

Solar quantity assumes south facing roof slope of 22.5 degrees with no shading $FSEC^{\circ}$

Economics of Achieving ERI of 58

Miami Comparison

PV at \$3.50 – 30% tax credit Savings per year over 2009 IECC baseline home

Savings to Investment Ratio (SIR) Achieving ERI of 58

Roof Area Required to Get to Net Zero

Assumes south roof slope of 22.5°

- Assumes no shading
- Miami example

House	Square feet roof required at 10% PV efficiency	Square feet roof required at 20% PV efficiency
2009 IECC w.		
8.3 kW PV	791	396
2015 IECC w.		
7.5 kW PV	722	361
High Efficiency w.		
6.6 kW PV	629	314

What Will Occur in the Marketplace

- If no limit on solar:
 - Will efficiency measures win out based on economics?
 - Will solar win out because it is very visible, high tech and easily marketed?
 - Builders might tout "We provide a solar powered home!" –
 even if it is only slightly powered by solar.
 - Customers are unlikely to understand that the highly efficient house (can't see efficiency) without solar and the moderately efficient house with solar will produce about the same energy bill.
 - Ideally we educate consumers about what a HERS index or ERI means. But not realistic. Posting of EPIs hasn't resulted in education. Mandatory rating system disclosures hasn't led to an educated public. Difficult task.

Conclusions

- Reaching an ERI of 58 is cost effective using life cycle cost analysis even with solar
 - Currently pure solar option is not as cost effective as high efficiency option or IECC 2015 prescriptive level of efficiency plus solar to get to 58.
- Using solar to reach ERI instead of efficiency will leave less prime solar roof space for future solar expansion, perhaps reducing ability of some homes to reach net zero.

Thank you

 UCF stands for opportunity www.ucf.edu

 FSEC - creating energy independence www.fsec.ucf.edu

 Florida Building Commission – your code body www.FloridaBuilding.org

