

TAC: Plumbing

Sub Code: Building

Total Mods for Plumbing: 43

Date Proposal Submitted	3/26/2010	Section	424.2.17.1.9
Chapter	4	TAC Recommendation	Pending Review
Affects HVHZ	No	Commission Action	Pending Review
Proponent	Jennifer Hatfield	General Comments	No
Attachments	No	Alternate Language	No

3934

Summary of Modification

This proposal makes changes to the pool alarm requirements in order to provide for consistency with the UL 2017 General-Purpose Signaling Devices and Systems standard that an exit alarm must comply with per the code.

Rationale

Without this change requirements within the code would be inconsistent with what is required in UL 2017. For example, section 78.4 of the standard requires the alarm to sound within 7 secs of access to the open position, but section 424.2.17.1.9 of the Code says it must sound immediately. An exit alarm manufacturer certifies its product to UL 2017 requirements.

Fiscal Impact Statement

Impact to local entity relative to enforcement of code

None, it simply removes language inconsistent with a referenced standard.

Impact to building and property owners relative to cost of compliance with code

None, it simply removes language inconsistent with a referenced standard.

Impact to industry relative to the cost of compliance with code

The modification may decrease cost by eliminating confusion when trying to comply. If this change is not made and enforcement was required of both the UL standard and the inconsistent requirements laid out in the Code, additional costs could occur in order to make the product comply with both.

Requirements

Has a reasonable and substantial connection with the health, safety, and welfare of the general public

Exit alarms are safety features certified to a national standard. This proposal clarifies that exit alarms in FL will meet these requirements. This proposal does not make any changes that are inconsistent with the Florida Residential Swimming Pool Safety Act, where exit alarms are an option.

Strengthens or improves the code, and provides equivalent or better products, methods, or systems of construction The modification improves the code by making it consistent with the UL 2017 standard.

Does not discriminate against materials, products, methods, or systems of construction of demonstrated capabilities This modification does not discriminate; in fact, it ensures all products are on the same playing field, each having to meet the requirements of the UL 2017 standard.

Does not degrade the effectiveness of the code

The modification improves the effectiveness of the code by clarifying what is required of an exit alarm used in association with the swimming pool barrier requirements.

http://www.floridabuilding.org/Upload/Modifications/Rendered/Mod_3936_TextOfModification_1.png

424.2.17.1.9 Where a wall of a dwelling serves as part of the barrier, one of the following shall apply:

1. All doors and windows providing direct access from the home to the pool shall be equipped with an exit alarm complying with UL 2017 that has a minimum sound pressure rating of 85 dB A at 10 feet (3048 mm). The exit alarm shall produce an continuous audible alarm within 7 seconds warning when the access is door and its screen are opened. The alarm shall sound immediately after the door is opened and be capable of being heard throughout the house during normal household activities. The alarm may shall be equipped with a momentary self-restoring switch manual means to temporarily deactivate the alarm for a single opening. Such deactivation shall last no more than 15 seconds. The deactivation switch shall be located at least 54 inches (1372 mm) above the threshold of the access door. Separate alarms are not required for each door or window if sensors wired to a central alarm sound when contact is broken at any opening.

Exceptions:

a. Screened or protected windows having a bottom sill height of 48 inches (1219 mm) or more measured from the interior finished floor at the pool access level.

b. Windows facing the pool on floor above the first story.

c. Screened or protected pass-through kitchen windows 42 inches (1067 mm) or higher with a counter beneath.

2. All doors providing direct access from the home to the pool must be equipped with a self-closing, selflatching device with positive mechanical latching/locking installed a minimum of 54 inches (1372 mm) above the threshold, which is approved by the authority having jurisdiction.

Date Proposal Submitted	4/1/2010	O a atliana	
Date Proposal Submitted	4/1/2010	Section	APSP
Chapter	35	TAC Recommendation	Pending Review
Affects HVHZ	No	Commission Action	Pending Review
Proponent	Jennifer Hatfield	General Comments	No
Attachments	No	Alternate Language	No

4328

Summary of Modification

Clarifies that NSPI is the former name of the APSP. Updates the ANSI/NSPI-5 standard for residential inground pools to reflect the 2010 revision. Deletes one of two portable spa standard references (ANSI-6), which is referenced twice, deletes the '92 reference.

Rationale

The current 2010 draft references ANSI/APSP-6 twice, this deletes the duplication that references the older standard. This proposal also clarifies that NSPI is the former name of APSP. The third change is to update the ANSI/NSPI-5 Residential Inground Swimming Pools standard to the 2010 revision. This revision is currently in the last phase of being approved and should be available by the time this code proposal goes in front of the TAC.

Fiscal Impact Statement

Impact to local entity relative to enforcement of code

The only fiscal impact may be associated with purchasing the revised ANSI/APSP-5 standard.

Impact to building and property owners relative to cost of compliance with code

There is no fiscal impact to consumers.

Impact to industry relative to the cost of compliance with code

The industry will have to comply with any changes in the revised ANSI-5 standard and will need to purchase this updated standard.

Requirements

Has a reasonable and substantial connection with the health, safety, and welfare of the general public

Updating to the lastest revision of a standard provides consumers who install a new pool with the most recent requirements.

Strengthens or improves the code, and provides equivalent or better products, methods, or systems of construction This proposal improves the code by updating the ANSI approved standard that provides construction requirements for inground

residential pools.

Does not discriminate against materials, products, methods, or systems of construction of demonstrated capabilities This proposal does not discriminate.

Does not degrade the effectiveness of the code

This proposal does not degrade the effectiveness of the code.

Note: changes to what is in the online draft are in green. APSP Association of Pool and Spa Professionals [formerly National Spa and Pool Institute (NSPA)] NSPI National Spa and Pool Institute 2111 Eisenhower Avenue Alexandria, VA 22314 Standard reference number Title Referenced in section number ANSI/NSF International Standard 50-1996, Circulation System Components and Related Materials for Swimming Pools, Spas/Hot Tubs 424.1.6.5.1, 424.1.6.5.2, 424.1.6.5.16, 424.1.6.5.16.4.2, 424.1.6.5.16.5.2, 424.1.9.2.5.2 ANSI/NSPI 3—99 American National Standard for Permanently Installed Residential Spas 424.2.6.1 ANSI/NSPI 4—99 American National Standard for Aboveground/Onground Residential Swimming Pools 424.2.6.1 ANSI/NSPIAPSP 5-0310 American National Standard for Residential Inground Swimming Pools 424.2.6.1 ANSI/NSPI 6—99 American National Standard for Portable

ANSI/NSPI 6—92 American National Standard for Residential Portable Spas 424.2.6.1

Date Proposal Submitted	3/26/2010	Section	UL
Chapter	35	TAC Recommendation	Pending Review
Affects HVHZ	No	Commission Action	Pending Review
Proponent	Jennifer Hatfield	General Comments	No
Attachments	No	Alternate Language	No

Summary of Modification

Updates the UL 2017 Standard for General-Purpose Signaling Devices and Systems to the 2008 second edition.

Rationale

Manufacturers of products relative to this standard will be certifying to the updated 2008 second edition; therefore our code should reference the latest version of the ANSI approved UL 2017 standard. The 2007 code also referenced the wrong section of the Building Code; the FBC Supplement to the 2009 IBC corrected the code section number, which should be the pool barrier alarm section, 424.2.17.1.9.

Fiscal Impact Statement

Impact to local entity relative to enforcement of code

There will not be any cost related to this modification to update references to the national standard.

Impact to building and property owners relative to cost of compliance with code

There will not be any cost related to this modification to update references to the national standard.

Impact to industry relative to the cost of compliance with code

There will not be any cost related to this modification to update references to the national standard.

Requirements

Has a reasonable and substantial connection with the health, safety, and welfare of the general public

Yes by referencing the latest edition of the standard it ensures products will have to meet the revised edition. These products include exit alarms that may be part of a pool safety barrier a consumer chooses to install to meet the Florida Residential Swimming Pool Safety Act, chapter 515, F.S.

Strengthens or improves the code, and provides equivalent or better products, methods, or systems of construction The modification improves the code by referencing the latest edition of the national standard.

Does not discriminate against materials, products, methods, or systems of construction of demonstrated capabilities This modification does not discriminate.

Does not degrade the effectiveness of the code

The modification improves the effectiveness of the code by referencing the latest edition of the national standard.

UL

Underwriters Laboratories, Inc. 333 Pfingsten Road Northbrook, IL 60062-2096

2017-2002 Standards for General-purpose Signaling Devices and Systems 424.2.17.1.9

2017-<u>04 Standard for General-Purpose Signaling Devices and Systems – with Revisions through October 13,</u> 2009 424.2.17.1.9

Date Proposal Submitted Chapter Affects HVHZ	4/2/2010 2711 No	Section TAC Recommendation Commission Action	New appendix Pending Review Pending Review	
Proponent	Doug Harvey	General Comments	Yes	ł
Attachments	Yes	Alternate Language	No	ĺ

Add code reference to chapter 35 including the edition date.

Summary of Modification

Add a new Appendix "XX" (Designation to be assigned)

Rationale

Please see support document for rationale.

Fiscal Impact Statement

Impact to local entity relative to enforcement of code

This proposed change does not impact local enforcement, it merely provides an alternate path for design that adhere to the Florida Building Code

Impact to building and property owners relative to cost of compliance with code

No fiscal impact to the building owner is anticipated

Impact to industry relative to the cost of compliance with code

No fiscal impact to the industry is anticipated

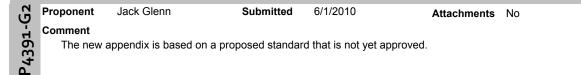
Requirements

Has a reasonable and substantial connection with the health, safety, and welfare of the general public

This proposed change protects the health, safety and welfare by allowing the code compliant use of "green" ideas and technologies

Strengthens or improves the code, and provides equivalent or better products, methods, or systems of construction This proposed change improves the code for design consistency

Does not discriminate against materials, products, methods, or systems of construction of demonstrated capabilities This proposed code change does not discriminate


Does not degrade the effectiveness of the code

This proposed change does not degrade the effectiveness of the code.

General Comment

61	Proponent	Doug Harvey	Submitted	6/1/2010	Attachments	No
P4391-	ideas for "g the IgCC h The code h requiremen process. M jurisdiction conjunction requiremen adoptable with each o	green" and green const as. This document has has been scrutinized so hts. The IgCC has been lany areas are in the p is looking to mandate of in with ASHRAE, ICC a hts in existence today a appendix will offer an of	truction are presen s been compared to o as to prevent com n evaluated and er rocess of trying to greener and more s nd others, includin and with a forward	t in the market o the base code flicts between b dorsed by the adopt "green" s sustainable requires g public meetin looking approa	lace today, no other docu s for Building, Mechanica building code requirement JSGBC and ASHRAE as tandards for their commu uirements. In addition, this gs, to ensure compatibility ch. While this is a relative	adoptable appendix. While many ument has been through the process al, Plumbing, Fuel Gas and Energy. ts and green/sustainable well through the national consensus nities. This will provide a method for s document was created in y with many of the existing ely new document, inclusion as an n or putting different standards at odds

General Comment

APPENDIX 'XX' (Designation to be assigned)

International Green Construction Code (IGCC)

The provisions in this appendix are not mandatory unless specifically referenced in the adopting ordinance

SECTION (XX) 101

GENERAL

(XX) 101.1 Scope. The provisions of this appendix are applicable to all occupancies covered by the International Green Construction Code (IGCC).

(XX) 101.2 Intent. The intent of this appendix is to provide direction for communities having a desire to preserve natural resources, especially water, and lessen the impact of construction on the built environment. Adoption of this standard is to safeguard the environment, public health, safety and general welfare through the establishment of requirements to reduce the negative potential impacts and increase the potential positive impacts of the built environment and building occupants, by means of minimum requirements to: conservation of natural resources, materials and energy; the employment of renewable energy technologies, indoor and outdoor air quality; and building operations and maintenance.

(XX) 101.3 Requirements. The design of buildings shall be in accordance with the International Green Construction Code (IGCC).

Add the Following to Chapter 35 – references:

<u>ICC</u>

International Code Council, Inc.

500 New Jersey Avenue, NW

6th Floor

Washington, DC 20001

Standard Referenced: IGCC

Title: International Green Construction Code (IGCC)

Reference in code section number: Appendix L

Date Submitted	April 2, 2010				
Mod Number					
Code Version	2010				
Code Change Cycle	2010 Triennial Original Modifications 03/01/2010/-/04/02/2010				
Sub-code	Building				
Chapter Topic	Appendix, International Green Construction Code				
Section	Appendix				
Related Modification	Add code reference to chapter 35 including the edition date.				
Affects HVHZ	No				
Summary of modification	Add a new Appendix "XX" (Designation to be assigned)				
Text of Modification	APPENDIX 'XX' (Designation to be assigned)				
	International Green Construction Code (IGCC)				
	The provisions in this appendix are not mandatory unless specifical referenced in the adopting ordinance				
	SECTION (XX) 101				
	GENERAL				
	(XX) 101.1 Scope. The provisions of this appendix are applicable to a occupancies covered by the International Green Construction Code (IGCC).				
	(XX) 101.2 Intent. The intent of this appendix is to provide direction for communities having a desire to preserve natural resources, especially water, and lessen the impact of construction on the built environment. Adoption of this standard is to safeguard the environment, public health, safety and general welfare through the establishment of requirements to reduce the negative potential impact and increase the potential positive impacts of the built environment an building occupants, by means of minimum requirements to: conservation of natural resources, materials and energy; the employment of renewable energy technologies, indoor and outdoor ai quality; and building operations and maintenance.				
	(XX) 101.3 Requirements. The design of buildings shall be in accordance with the International Green Construction Code (IGCC).				
	Add the Following to Chapter 35 – references:				
	ICC				
	International Code Council, Inc.				

P4391 Rationale

	500 New Jersey Avenue, NW
	6 th Floor
	Washington, DC 20001
	Standard Referenced: IGCC
	Title: International Green Construction Code (IGCC)
	Reference in code section number: Appendix L
Rational	
	1. The purpose of this proposed change is to add a new optional appendix to
	the FBC.2. The proposed appendix will reference the International Green Construction
	Code (IGCC). This newly-developed, consensus-based standard may be used in conjunction with local code requirements specific to green buildings covered in the
	 scope. Green buildings are currently being designed and constructed nationwide using different programs guidelines, rating systems, and standards. The IGCC was developed under the direction of ICC, in conjunction with representatives from other nationally-recognized organizations with experience and expertise in this field,
	including ASHRAE members. In many cases, limited guidance is given as to the criteria to be used to determine if the building project meets the expectations. The IGCC provides a path using a publicly-reviewed resource for local jurisdictions to adopt and use in the administration of green residential building design.
Fiscal Impact statement	
Impact to Local Enforcement	This proposed change does not impact local enforcement, it merely provides an alternate path for design that adhere to the Florida Building Code
Impact to Building owner	No fiscal impact to the building owner is anticipated
Impact to Industry	No fiscal impact to the industry is anticipated
Requirements	
Has connection to health safety and Welfare	This proposed change protects the health, safety and welfare by allowing the code compliant use of "green" ideas and technologies
Strengths or improves Code	This proposed change improves the code for design consistency
Does not discriminate	This proposed change does not discriminate
Does not degrade effectiveness of code	This proposed change does not degrade the effectiveness of the code.

P4391 Rationale

Sub Code: Existing Building

Date Proposal Submitted	4/1/2010	Section	New 302.5
Chapter	3	TAC Recommendation	Pending Review
Affects HVHZ	No	Commission Action	Pending Review
Proponent	Duren Gary	General Comments	No
Attachments	No	Alternate Language	No

See proposed mods to chapter 5 and 6

M0ds 4338, 4339

Summary of Modification

Add language to address residential swimming pools

Rationale

This code change is intended address residential swimming pools and spas under the existing building code - there are many pools and spas that do not meet the current FBC requirements for barriers, alarms and entrapment prevention.

Fiscal Impact Statement

Impact to local entity relative to enforcement of code

local authorities having jurisdiction will need to implement measures to permit swimming pool and spa repair and renovations

Impact to building and property owners relative to cost of compliance with code

there will be moderate costs associated with bringing existing pools and spas up to current minimum safety standards

Impact to industry relative to the cost of compliance with code

Industry will not be adversely impacted by this code change

Requirements

Has a reasonable and substantial connection with the health, safety, and welfare of the general public

Public safety and wlefare will be improved as many sub-standard pools and spas will be brought into compliance with exsisting rules

Strengthens or improves the code, and provides equivalent or better products, methods, or systems of construction The exisiting building code is improved by including swimming pools and spas in its scope

Does not discriminate against materials, products, methods, or systems of construction of demonstrated capabilities The code change does not discriminate against any product, method, system of construction or material

Does not degrade the effectiveness of the code

The inclusion of swimming pool and spa verbiage improves the effectiveness of the existing building code

ADD A NEW SUBSECTION TO CHAPTER 3 PRESCRIPTIVE COMPLIANCE METHOD, OF THE FLORIDA BUILDING CODE, EXISTING BUILDINGS

<u>302.5 R3 Pools and Spas. Additions, alterations, renovations or repairs to existing installations shall conform to the *Florida* Building Code, Residential without requiring the existing installation to comply with all the requirements of the code. Additions, alterations or repairs shall not cause the existing installation to become unsafe or hazardous.</u>

Minor alterations, renovations and repairs to existing installations shall meet the provisions for new construction, unless such work is done in the same manner and arrangement as was in the existing system, is not hazardous and is approved.

Date Proposal Submitted	4/1/2010	Section	New 510.1	
Chapter	5	TAC Recommendation	Pending Review	
Affects HVHZ	No	Commission Action	Pending Review	
Proponent	Duren Gary	General Comments	No	
Attachments	No	Alternate Language	Yes	

See companion modification to chapter 3

Summary of Modification

Add language to address residential swimming pool and spa issues

Rationale

This code change is intended address residential swimming pools and spas under the existing residential building code - there are many pools and spas that do not meet the current FBC requirements entrapment prevention.

Fiscal Impact Statement

Impact to local entity relative to enforcement of code

local authorities having jurisdiction will need to implement measures to permit swimming pool and spa repair and renovations

Impact to building and property owners relative to cost of compliance with code

there will be moderate costs associated with bringing existing pools and spas up to current minimum safety standards

Impact to industry relative to the cost of compliance with code

Industry will not be adversely impacted by this code change

Requirements

Has a reasonable and substantial connection with the health, safety, and welfare of the general public Public safety and wlefare will be improved as many sub-standard pools and spas will be brought into compliance with exsisting

rules

Strengthens or improves the code, and provides equivalent or better products, methods, or systems of construction The exisiting building code is improved by including swimming pools and spas in its scope

Does not discriminate against materials, products, methods, or systems of construction of demonstrated capabilities

The code change does not discriminate against any product, method, system of construction or material

Does not degrade the effectiveness of the code

The inclusion of swimming pool and spa verbiage improves the effectiveness of the existing building code

Alternate Language

Аı	Proponent	Jennifer Hatfield	Submitted	6/1/2010	Attachments	Yes					
ď	Rationale										
433	The modifica	tion as written implies the	at when repairing	g (or replacing in t	he case of the modification wo	rding) a circulation system					
4	component t	he entire circulation syste	em must comply	with the current c	ode. This goes well beyond the	e current code					
٩	requirements	s that exist when making	a repair on any b	ouilding or structu	re. This alternative language s	till may go somewhat					
		is required when making	g a repair; howev	er, the language	addresses a specific safety co	mponent, drain covers,					
	which wo										
	Fiscal Impact Statement										
	Impact to local entity relative to enforcement of code										
	AHJ will need to implement measures to permit for these repairs.										
	Impact to building and property owners relative to cost of compliance with code										
	There will be moderate costs associated with installing the new ASME drain cover.										
	Impact to industry relative to the cost of compliance with code										
	The industry should not be adversely affected, it will ensure a proper drain cover is installed.										
	Requirements										
	Has a reasonable and substantial connection with the health, safety, and welfare of the general public										
	The alter	native language improves	s the public safet	y and welfare by	requiring a proper drain cover	is installed when repairing					
	any part o	of the circulation system	of an existing po	ol or spa.							
	Strengthens	or improves the code, a	and provides equ	uivalent or better	products, methods, or syster	ns of construction					
	The alter	native language improves	s the code by rec	uiring a key safe	y component.						
	Does not dis	criminate against mater	ials, products, n	nethods, or syste	ms of construction of demon	strated capabilities					
	The alter	native language does not	t discriminate aga	ainst materials, pr	oducts, methods, or systems.						
	Does not de	grade the effectiveness	of the code								

The alternative language does not degrade the effectivenes of the code.

ADD A NEW SECTION TO CHAPTER 5 REPAIRS, OF THE FLORIDA BUILDING CODE, EXISTING BUILDINGS

Page: `

Section 510 RESIDENTIAL SWIMMING POOLS AND SPAS

510.1 Pool and Spa Circulation System Components. When any pool or spa circulation system component is replaced, including suction fittings, pumps, skimmers, filters, and the like, the circulation system shall comply with Section R4101 of the *Florida Building Code*, *Residential*.

Delete the proposed modification language and replace it with the following:

Section 510 RESIDENTIAL SWIMMING POOLS AND SPAS

<u>R510</u> Pool or Spa Suction Fittings. When any pool or spa circulation system or component under goes a repair, all suction fittings of that pool or spa shall comply with ANSI/ASME A112.19.8 - 2007 and shall be installed in accordance with the manufacturers' instructions.

See companion modifications to chapter 3 and 5

Summary of Modification

Add language to address residential swimming pool and spa issues

Rationale

This code change is intended address residential swimming pools and spas under the existing residential building code - there are many pools and spas that do not meet the current FBC requirements entrapment prevention.

Fiscal Impact Statement

Impact to local entity relative to enforcement of code

local authorities having jurisdiction will need to implement measures to permit swimming pool and spa repair and renovations

Impact to building and property owners relative to cost of compliance with code

there will be moderate costs associated with bringing existing pools and spas up to current minimum safety standards

Impact to industry relative to the cost of compliance with code

Industry will not be adversely impacted by this code change

Requirements

Has a reasonable and substantial connection with the health, safety, and welfare of the general public Public safety and wlefare will be improved as many sub-standard pools and spas will be brought into compliance with exsisting rules

Strengthens or improves the code, and provides equivalent or better products, methods, or systems of construction The exisiting building code is improved by including swimming pools and spas in its scope

Does not discriminate against materials, products, methods, or systems of construction of demonstrated capabilities

The code change does not discriminate against any product, method, system of construction or material

Does not degrade the effectiveness of the code

The inclusion of swimming pool and spa verbiage improves the effectiveness of the existing building code

Alternate Language

Dueueueut											
Proponent	Jennifer Hatfield	Submitted	6/1/2010	Attachments	Yes						
Rationale											
This languag	This language addresses all parts of the existing pool or spa, whereas the original language applied only to circulation										
components, leaving out other important components of the pool & spa such as barriers and electrical requirements. This											
0 0	language also addresses a specific safety component, drain covers, which would need to be installed when altering a circulation										
component or system. The federal VGB Pool and Spa Safety Act references ASME A112.19.8 – 2007, the suction fittings for											
swimm											
Fiscal Impact	Statement										
Impact to loc	cal entity relative to en	forcement of code	9								
AHJ will h	have to implement meas	sures to permit the	ese alterations.								
Impact to bu	ilding and property ow	ners relative to c	ost of compliance	e with code							
There will	I be moderate costs dep	ending on what a	Iteration is being I	nade and to install the drain co	over.						
Impact to inc	dustry relative to the co	ost of compliance	with code								
This alter	native language should	not adversely imp	pact the industry.								
Requirements	6										
Has a reasor	nable and substantial c	onnection with th	he health, safety,	and welfare of the general pu	blic						
	001										
	•			Ū							
-	•			products, methods, or system	ns of construction						
	0 0 0	•									
Does not dis	criminate against mate	erials, products, r	nethods, or syste	ms of construction of demon	strated capabilities						
	Rationale This language components, language als component of swimm Fiscal Impact Impact to low AHJ will f Impact to but There will Impact to ime This alter Requirements Has a reason The altern current of Strengthens The altern	Rationale This language addresses all parts of components, leaving out other impor language also addresses a specific s component or system. The federal V swimm Fiscal Impact Statement Impact to local entity relative to end AHJ will have to implement meas Impact to building and property ow There will be moderate costs dep Impact to industry relative to the co This alternative language should Requirements Has a reasonable and substantial c The alternative language improve current code requirements and re Strengthens or improves the code, The alternative language strength	 Rationale This language addresses all parts of the existing pool components, leaving out other important components language also addresses a specific safety component component or system. The federal VGB Pool and Spaswimm Fiscal Impact Statement Impact to local entity relative to enforcement of code AHJ will have to implement measures to permit the Impact to building and property owners relative to c There will be moderate costs depending on what a Impact to industry relative to the cost of compliance This alternative language should not adversely imp Requirements Has a reasonable and substantial connection with the The alternative language improves public safety ar current code requirements and requiring new ASM Strengthens or improves the code, and provides equirements	 Rationale This language addresses all parts of the existing pool or spa, whereas the components, leaving out other important components of the pool & spatianguage also addresses a specific safety component, drain covers, while component or system. The federal VGB Pool and Spa Safety Act references wimm Fiscal Impact Statement Impact to local entity relative to enforcement of code AHJ will have to implement measures to permit these alterations. Impact to building and property owners relative to cost of compliance. There will be moderate costs depending on what alteration is being in Impact to industry relative to the cost of compliance with code This alternative language should not adversely impact the industry. Requirements Has a reasonable and substantial connection with the health, safety, a The alternative language improves public safety and welfare by requirements or improves the code, and provides equivalent or better The alternative language strengthens and improves the code.	 Rationale This language addresses all parts of the existing pool or spa, whereas the original language applied of components, leaving out other important components of the pool & spa such as barriers and electrical language also addresses a specific safety component, drain covers, which would need to be installed component or system. The federal VGB Pool and Spa Safety Act references ASME A112.19.8 – 2007 swimm Fiscal Impact Statement Impact to local entity relative to enforcement of code AHJ will have to implement measures to permit these alterations. Impact to building and property owners relative to cost of compliance with code There will be moderate costs depending on what alteration is being made and to install the drain compliance to industry relative to the cost of compliance with code This alternative language should not adversely impact the industry. Requirements Has a reasonable and substantial connection with the health, safety, and welfare of the general put The alternative language improves public safety and welfare by requiring that any alterations to an current code requirements and requiring new ASME drain covers be installed when altering the circ Strengthens or improves the code, and provides equivalent or better products, methods, or system						

The alternative language does not discriminate against any materials, products, methods, or systems of construction.

Does not degrade the effectiveness of the code

The alternative language does not degrade the effectiveness of the code.

ADD A NEW SECTION TO CHAPTER 6 ALTERATIONS- LEVEL 1, OF THE FLORIDA BUILDING CODE, EXISTING BUILDINGS

Section 613 RESIDENTIAL SWIMMING POOL AND SPAS

613.1. Existing Pool and Spa Circulation System Components. Pool or spa circulation components undergoing alteration, including suction fittings, pumps, skimmers, filters, and the like shall comply with Section R4101 of the Florida Building Code, <u>Residential</u>.

Delete the proposed modification language and replace it with the following:

Section 613 RESIDENTIAL SWIMMING POOLS AND SPAS

<u>R613 Existing Pool and Spa Components and Systems</u>. A pool or spa component or system undergoing alteration shall comply with Section R4101 of the Florida Building Code, Residential.

<u>R613.1 Pool or Spa Suction Fittings</u>. When any pool or spa circulation system or component under goes an alteration, all suction fittings of that pool or spa shall comply with ANSI/ASME A112.19.8 - 2007 and shall be installed in accordance with the manufacturers' instructions.

Note - the ASME standard will need to be inserted into the referenced standard section of the code.

Sub Code: Fuel Gas

				L.
Date Proposal Submitted	4/2/2010	Section	All	£.
Chapter	1	TAC Recommendation	Pending Review	Į.
Affects HVHZ	No	Commission Action	Pending Review	ł.
Proponent	Doug Harvey	General Comments	Yes	ĺ.
Attachments	Yes	Alternate Language	No	ł.
				£

None

Summary of Modification

Replace the Florida Building Code-Fuel Gas with the 2009 International Fuel Gas Code in its entirety.

Rationale

There are no Florida specific problems that are not covered by the regulations contained within the 2009 International Fuel Gas Code.

Fiscal Impact Statement

Impact to local entity relative to enforcement of code

There is no impact to local enforcement other than gaining consistency and putting inspection and review personnel in line with the Code that certification is attained under and used throughout the nation

Impact to building and property owners relative to cost of compliance with code

None

Impact to industry relative to the cost of compliance with code

Allows for a code that is more up to date with the new standards, practices and materials. Improves consistency and compliance in design, construction and enforcement. Saves money and time by allowing for a single place to request code modifications.

Requirements

Has a reasonable and substantial connection with the health, safety, and welfare of the general public

No change

- Strengthens or improves the code, and provides equivalent or better products, methods, or systems of construction Improves
- Does not discriminate against materials, products, methods, or systems of construction of demonstrated capabilities This change does not discriminate

Does not degrade the effectiveness of the code

This change does not degrade the effectiveness of the code and should improve effectiveness as consistency will be increased.

General Comment

5	Proponent	Doug Harvey	Submitted	6/1/2010	Attachments	No	
81-(Comment		n of Elonista (DC		·		
P438	BOAF exe	uilding Officials Associatio ecutive board has been cor	nsulted regardir	ng this code pro	posal and they are in agr	eement that the pro	posal appears to
<u>а</u>	and have a strike-thro needed, a	he line of the vote taken by a separate Florida suppler ugh/underline version of th s well as the proposed doo is the root document for th	nent, if needed. Te document ha cument being fa	The Internations not been attain the second	nal Code is the base code ched to this modification. ase code, this did not see	e for the Florida Co Due to the length a m necessary. Since	des. As such, a and file sizes e the base
	the Comm	ycles, we ask the Commis iission during a public mee eet Florida Statutes or rule	ting in the Fall	of 2009. BOAF	supports taking the very	specific items modi	•

Replace the Florida Building Code Fuel Gas with the 2009 International Fuel Gas Code in its entirety.

Date Submitted	4/2/2010			
Mod Number				
Code Version	2010			
Code Change Cycle	2010 Triennial Original Modifications 03/01/2010-04/02/2010			
Sub-code	Fuel Gas			
Chapter Topic	Publication			
Section	All			
Related Modification				
Affects HVHZ	No			
Summary of modification	Replace the Florida Building Code-Fuel Gas with the 2009 International Fuel Gas Code in its entirety.			
Text of Modification	The 2009 International Fuel Gas Code text in its entirety.			
Rational	There are no Florida specific problems that are not covered by the regulations contained within the 2009 International Fuel Gas Code.			
Fiscal Impact statement	There is no fiscal impact by this change			
Impact to Local Enforcement	There is no impact to local enforcement other than gaining consistency and putting inspection and review personnel in line with the Code that certification is attained under and used throughout the nation			
Impact to Building owner	None			
Impact to Industry	Allows for a code that is more up to date with the new standards, practices and materials. Improves consistency and compliance in design, construction and enforcement. Saves money and time by allowing for a single place to request code modifications.			
Requirements	None			
Has connection to health safety and Welfare	No change			
Strengths or improves Code	Improves			
Does not discriminate	This change does not discriminate			
Does not degrade effectiveness of code	This change does not degrade the effectiveness of the code and should improve effectiveness as consistency will be increased.			

Chapter 3 Affects HVHZ N Proponent 0	3 No Christopher Jones	Section TAC Recommendation Commission Action General Comments Alternate Language	301.1.1 Pending Review Pending Review Yes No
--	------------------------------	--	--

Summary of Modification

Clarify the elevation above which appliances, equipment and installations are required to be elevated is the elevation specified in 1612.4.

Rationale

The purpose of this code change is to provide consistency between the elevations of buildings and structures that are specified in Section 1612.4 and the elevations required for materials, elements, and equipment in those buildings and structures. Approved by ICC in Baltimore for 2012 IFGC (S92).

Fiscal Impact Statement

Impact to local entity relative to enforcement of code

No impact to Florida's communities that participate in the NFIP and administer floodplain management ordinances consistent with the NFIP regulations (44 CFR 60.3).

Impact to building and property owners relative to cost of compliance with code

No impact. Owners must comply with local floodplain management ordinances adopted by Florida communities.

Impact to industry relative to the cost of compliance with code

No impact. Compliance with local floodplain management ordinances adopted by Florida communities is not affected.

Requirements

Has a reasonable and substantial connection with the health, safety, and welfare of the general public

Achieves protection of health, safety, and welfare of the general public, the same bases for adoption and enforcement of local floodplain management ordinances.

- Strengthens or improves the code, and provides equivalent or better products, methods, or systems of construction Clarifies code requirements for materials, products, methods, and systems.
- Does not discriminate against materials, products, methods, or systems of construction of demonstrated capabilities Materials, products, methods, and systems that comply with local floodplain management ordinances are not affected by this proposed modification.

Does not degrade the effectiveness of the code

Improves effectiveness of the code by clarifying the specific intent of the provision.

General Comment

G1	Proponent	Joy Duperault	Submitted	5/27/2010	Attachments	No
P4400-(•	ate that equipment serving I even if the building is not	a building be at affected. This i	or above the elevat s the way most build	tion of the lowest floor dings are built. In add	support for this proposal. It is r, otherwise equipment may be ition, if equipment is lower than the uired elevation don't apply.

[B] 301.11 Flood hazard. For structures located in flood hazard areas, the appliance, equipment and system installations regulated by this code shall be located at or above the <u>elevation required by Section 1612.4 of the</u> <u>Florida Building Code for utilities and attendant equipment</u> design flood elevation and shall comply with the flood-resistant construction requirements of the Florida Building Code.

Exception: The appliance, equipment and system installations regulated by this code are permitted to be located below the design flood elevation required by Section 1612.4 of the Florida Building Code for utilities and attendant equipment provided that they are designed and installed to prevent water from entering or accumulating within the components and to resist hydrostatic and hydrodynamic loads and stresses, including the effects of buoyancy, during the occurrence of flooding to such elevation the design flood elevation shall comply with the flood resistant construction requirements of the Florida Building Code.

Date Proposal Submitted	3/3/2010	Section	301.3	ł
Chapter	3	TAC Recommendation	Pending Review	ł.
Affects HVHZ	No	Commission Action	Pending Review	Ŀ
Proponent	Jose Guanch	General Comments	No	É.
Attachments	No	Alternate Language	No	ŧ.
				6.

Summary of Modification

This section refers to 105, however 105 exists only in the ICC code. Unless this is corrected there is no way to allow provisions for "alternative" methods in the Fuel Gas Code. I suggest either using the ICC wording in 105 or referring the reader to section 101.1.

Rationale

As it stands, section 105 is "reserved" thereby making section 301.3 unenforceable. Referring to the correct code section would allow proper enforcement of the code and make the code more of a "performance" type code by allowing alternative, innovative, equivalent materials and systems.

Fiscal Impact Statement

Impact to local entity relative to enforcement of code

NONE

Impact to building and property owners relative to cost of compliance with code NONE

Impact to industry relative to the cost of compliance with code

NONE

Requirements

Has a reasonable and substantial connection with the health, safety, and welfare of the general public

As it stands, section 105 is "reserved" thereby making section 301.3 unenforceable. Referring to the correct code section would allow proper enforcement of the code and make the code more of a "performance" type code by allowing alternative, equivalent materials and systems.

Strengthens or improves the code, and provides equivalent or better products, methods, or systems of construction Fixes a "glitch" and failure in the code wording. Allows for "alternative" equal or better products, systems, methods.

Does not discriminate against materials, products, methods, or systems of construction of demonstrated capabilities NO. On the contrary it supports and encourages the same.

Does not degrade the effectiveness of the code

NO. It strengthens it's wording.

301.3 Listed and labeled. Appliances regulated by this code shall be listed and labeled for the application in which they are used unless otherwise approved in accordance with Section $\frac{105}{101.1}$. The approval of unlisted appliances in accordance with Section $\frac{101.1}{101.1}$ shall be based upon approved engineering evaluation.

Date Proposal Submitted	3/30/2010	Section	305.4
Chapter	3	TAC Recommendation	Pending Review
Affects HVHZ	No	Commission Action	Pending Review
Proponent	Robert Trumbower	General Comments	No
Attachments	No	Alternate Language	No

Summary of Modification

To make Section 305.4 of the Florida Fuel Gas Code the same as the 2009 International Fuel Gas Code.

Rationale

I see no reason why section 305.4 of the Florida Building should be different than section 305.4 of the International Fuel gas Code.

Fiscal Impact Statement

Impact to local entity relative to enforcement of code

None

Impact to building and property owners relative to cost of compliance with code

None

Impact to industry relative to the cost of compliance with code

None

Requirements

Has a reasonable and substantial connection with the health, safety, and welfare of the general public This change clarifies the requirements for installing appliances in Public garage.

Strengthens or improves the code, and provides equivalent or better products, methods, or systems of construction Makes it the same as the IFGC

Does not discriminate against materials, products, methods, or systems of construction of demonstrated capabilities no

Does not degrade the effectiveness of the code

no

305.4 Public garages/Parking structures. Appliances shall be installed in accordance with manufacturer's instructions and NFPA 88B located in public garages, motor fuel-dispensing facilities, repair garages or other areas frequented by motor vehicles shall be installed a minimum of 8 feet (2438mm) above the floor. Where motor vehicles are capable of passing under an appliance, the appliance shall be installed at the clearances required by the appliance manufacturer and not less than 1 foot (305 mm) higher than the tallest vehicle garage door opening.

Exception: The requirements of this section shall not apply where the appliances are protected from motor vehicle impact and installed in accordance with Section 305.3 and NFPA_30A_

Date Proposal Submitted	3/23/2010	Section	404.15.3
Chapter	4	TAC Recommendation	Pending Review
Affects HVHZ	No	Commission Action	Pending Review
Proponent	J Glenn-BASF	General Comments	No
Attachments	No	Alternate Language	No

4023

Summary of Modification

Retain base code (IFGC) language as it provides better direction

Rationale

The base code change provides more specific direction and restores the Florida Code to the nationally accepted practice.

Fiscal Impact Statement

Impact to local entity relative to enforcement of code

None

Impact to building and property owners relative to cost of compliance with code

None

Impact to industry relative to the cost of compliance with code

None

Requirements

Has a reasonable and substantial connection with the health, safety, and welfare of the general public No change

Strengthens or improves the code, and provides equivalent or better products, methods, or systems of construction Brings Florida in-line with national practice

Does not discriminate against materials, products, methods, or systems of construction of demonstrated capabilities Does not discriminate against anything

Does not degrade the effectiveness of the code

Does not degrade the code

404.15.3 Tracer. An insulated copper tracer wire or other approved conductor shall be installed adjacent to underground nonmetallic gas piping. Access shall be provided to the tracer wire or the tracer wire shall terminate above ground at each end of the nonmetallic gas piping. The tracer wire size shall not be less than 18 AWG and the insulation type shall be suitable for direct burial.

404.15.3 Tracer. A yellow insulated copper tracer wire or other approved conductor shall be installed adjacent to underground nonmetallic piping. Access shall be provided to the tracer wire or the tracer wire shall terminate above ground at each end of the nonmetallic piping. The tracer wire size shall not be less than 18 AWG and the insulation type shall be suitable for direct burial.

Date Proposal Submitted	3/23/2010	Section	406.7.4
Chapter	4	TAC Recommendation	Pending Review
Affects HVHZ	No	Commission Action	Pending Review
Proponent	J Glenn-BASF	General Comments	No
Attachments	No	Alternate Language	No

Summary of Modification

Retain base code (IFGC) language as it provides better direction

Rationale

The base code change provides more specific direction and restores the Florida Code to the nationally accepted practice.

Fiscal Impact Statement

Impact to local entity relative to enforcement of code

None

Impact to building and property owners relative to cost of compliance with code

None

Impact to industry relative to the cost of compliance with code

none

Requirements

Has a reasonable and substantial connection with the health, safety, and welfare of the general public No change

Strengthens or improves the code, and provides equivalent or better products, methods, or systems of construction Brings Florida in-line with national practice

Does not discriminate against materials, products, methods, or systems of construction of demonstrated capabilities Does not discriminate against anything

Does not degrade the effectiveness of the code

Does not degrade the code

406.7.4 Placing equipment in operation. After the piping has been placed in operation, all equipment shall be placed in operation per its listing and the manufacturer's instructions.

406.7.4 Placing appliances and equipment in operation. After the piping system has been placed in operation, all appliances and equipment shall be purged and then placed in operation, as necessary.

Sub Code: Plumbing

Date Proposal Submitted	4/2/2010	Section	All
Chapter	1	TAC Recommendation	Pending Review
Affects HVHZ	No	Commission Action	Pending Review
Proponent	Doug Harvey	General Comments	Yes
Attachments	Yes	Alternate Language	Yes

Summary of Modification

Replace the Florida Building Code-Plumbing with the 2009 International Plumbing Code in its entirety.

Rationale

There are no Florida specific problems that are not covered by the regulations contained within the 2009 International Plumbing Code.

Fiscal Impact Statement

Impact to local entity relative to enforcement of code

There is no impact to local enforcement other than gaining consistency and putting inspection and review personnel in line with the Code that certification is attained under and used throughout the nation

Impact to building and property owners relative to cost of compliance with code

None

Impact to industry relative to the cost of compliance with code

Allows for a code that is more up to date with the new standards, practices and materials. Improves consistency and compliance in design, construction and enforcement. Saves money and time by allowing for a single place to request and present code modifications.

Requirements

Has a reasonable and substantial connection with the health, safety, and welfare of the general public

No change

Strengthens or improves the code, and provides equivalent or better products, methods, or systems of construction Improves

Does not discriminate against materials, products, methods, or systems of construction of demonstrated capabilities This change does not discriminate

Does not degrade the effectiveness of the code

This change does not degrade the effectiveness of the code and should improve effectiveness as consistency will be increased

Alternate Language

Proponent	Eberhard Roeder	Submitted	6/1/2010	Attachments	Yes
Rationale					
Internationa authority. As	Plumbing Code. Chang an example, the currer te" sewage disposal sys	ing these delineatly proposed Flor	tions by administrat	nd authorizations that are di ve procedures appears to b e already recognizes the rec As an alternative proposal, t	e lacking legislative gulation of what the IPC
Impact to lo	cal entity relative to en	forcement of cod	e		
should m	ake enforcement easier	by referring to Fl	orida-specific autho	ity	
Impact to b	uilding and property ow	ners relative to o	ost of compliance	with code	
no chang	e to current rules				
Impact to in	dustry relative to the co	ost of compliance	e with code		
no chang	e to current rules				
Requirement	s				
Has a reaso	nable and substantial o	onnection with t	he health, safety, ar	nd welfare of the general pu	ıblic
Clarifies	coordination between pl	umbing, health a	nd environmental au	thorities	
Strengthens	s or improves the code,	and provides eq	uivalent or better p	oducts, methods, or syste	ms of construction
clarifies t	erms in the code				
Does not di	scriminate against mate	erials, products,	methods, or system	s of construction of demor	istrated capabilities
yes					
	grade the effectiveness	s of the code			
Does not de					

Proponen	t Doug Harvey
. .	

y Submitted

itted 6/1/2010

Attachments No

Proponent Comment We, th BOAF ao alo

We, the Building Officials Association of Florida (BOAF), believe this modification may require some additional explanation. The BOAF executive board has been consulted regarding this code proposal and they are in agreement that the proposal appears to go along the line of the vote taken by the Commission last fall to remove non-Florida specific items, return to the base documents and have a separate Florida supplement, if needed. The International Code is the base code for the Florida Codes. As such, a strike-through/underline version of the document has not been attached to this modification. Due to the length and file sizes needed, as well as the proposed document being familiar as the base code, this did not seem necessary. Since the base document is the root document for the Florida code, and the Commission voted to return to the base documents over the next two (2) code cycles, we ask the Commission to accept the proposal and allow it to move forward. This is based on the vote taken by the Commission during a public meeting in the Fall of 2009. BOAF supports taking the very specific items modifying the base code to meet Florida Statutes or rules into a smaller and easier to manage stand alone Florida supplement.

Replace the Florida Building Code Plumbing with the 2009 International Plumbing Code in its entirety.

701.2 Sewer required.

P4380 -A1 Text Modification

Every building in which plumbing fixtures are installed and all premises having <u>sanitary</u> drainage piping shall be connected to a <u>public sewer</u>, where available, collection/transmission system and/or a treatment plant regulated by <u>environmental authorities under Chapter 403</u>, Florida Statutes, and Chapters 62-620 (Wastewater Facility <u>Permitting</u>) and 62-604 (Collection Systems and Transmission Facilities), Florida Administrative Code, or to an approved <u>private onsite</u> sewage treatment and disposal system regulated by health authorities under Chapter 381.0065, Florida Statutes, and <u>in accordance with</u> Chapter 64E-6, Florida Administrative Code, Standards for Onsite Sewage Treatment and Disposal Systems the International Private Sewage Disposal Code.

Date Submitted	
Mod Number	
Code Version	2010
Code Change Cycle	2010 Triennial Original Modifications 03/01/2010/-/04/02/2010
Sub-code	Plumbing
Chapter Topic	Publication
Section	All
Related Modification	
Affects HVHZ	No
Summary of modification	Replace the Florida Building Code-Plumbing with the 2009 International Plumbing Code in its entirety.
Text of Modification	The 2009 International Plumbing Code text in its entirety.
Rational	There are no Florida specific problems that are not covered by the regulations contained within the 2009 International Plumbing Code.
Fiscal Impact statement	There is no fiscal impact by this change
Impact to Local Enforcement	There is no impact to local enforcement other than gaining consistency and putting inspection and review personnel in line with the Code that certification is attained under and used throughout the nation
Impact to Building owner	None
Impact to Industry	Allows for a code that is more up to date with the new standards, practices and materials. Improves consistency and compliance in design, construction and enforcement. Saves money and time by allowing for a single place to request and present code modifications.
Requirements	None
Has connection to health safety and Welfare	None
Strengths or improves Code	Improves
Does not discriminate	This change does not discriminate
Does not degrade effectiveness of code	This change does not degrade the effectiveness of the code and should improve effectiveness as consistency will be increased

P4380 Text Modification

Date Proposal Submitted	3/23/2010	Section	305.6	E.
Chapter	3	TAC Recommendation	Pending Review	ł.
Affects HVHZ	No	Commission Action	Pending Review	
Proponent	J Glenn-BASF	General Comments	No	ł.
Attachments	No	Alternate Language	No	
				£

4022

Summary of Modification

Retain base code language

Rationale

The requirements are basically the same

Fiscal Impact Statement

Impact to local entity relative to enforcement of code

None

Impact to building and property owners relative to cost of compliance with code

None

Impact to industry relative to the cost of compliance with code

None

Requirements

Has a reasonable and substantial connection with the health, safety, and welfare of the general public

No change

Strengthens or improves the code, and provides equivalent or better products, methods, or systems of construction No chage

Does not discriminate against materials, products, methods, or systems of construction of demonstrated capabilities Does not discriminate against anytrhing

Does not degrade the effectiveness of the code

Does not degrade the code.

.....

305.6 Freezing. Where the design temperature is less than 32oF (0°C), a water, soil or waste pipe shall not be installed outside of a building, in attics or crawl spaces, or be concealed in outside walls in any location subjected to freezing temperatures unless an adequate provision is made to protect it from freezing by insulation or heat or both. Water service pipe shall be installed not less than 12 inches (305 mm) deep or less than 6 inches (152 mm) below the frost line.

305.6 Freezing. Water, soil and waste pipes shall not be installed outside of a building, in attics or crawl spaces, concealed in outside walls, or in any other place subjected to freezing temperatures unless adequate provision is made to protect such pipes from freezing by insulation or heat or both. Exterior water supply system piping shall be installed not less than 6 inches (152 mm) below the frost line and not less than 12 inches (305 mm) below grade.

Summary of Modification

Clarify the elevation above which plumbing systems, equipment and fixtures are required to be elevated is the elevation specified in 1612.4.

Rationale

The purpose of this code change is to provide consistency between the elevations of buildings and structures that are specified in Section 1612.4 and the elevations required for materials, elements, and equipment in those buildings and structures. Approved by ICC in Baltimore for 2012 IPC (S92).

Fiscal Impact Statement

Impact to local entity relative to enforcement of code

No impact to Florida's communities that participate in the NFIP and administer floodplain management ordinances consistent with the NFIP regulations (44 CFR 60.3).

Impact to building and property owners relative to cost of compliance with code

No impact. Owners must comply with local floodplain management ordinances adopted by Florida communities.

Impact to industry relative to the cost of compliance with code

No impact. Compliance with local floodplain management ordinances adopted by Florida communities is not affected.

Requirements

Has a reasonable and substantial connection with the health, safety, and welfare of the general public

Achieves protection of health, safety, and welfare of the general public, the same bases for adoption and enforcement of local floodplain management ordinances.

Strengthens or improves the code, and provides equivalent or better products, methods, or systems of construction Clarifies code requirements for materials, products, methods, and systems.

Does not discriminate against materials, products, methods, or systems of construction of demonstrated capabilities Materials, products, methods, and systems that comply with local floodplain management ordinances are not affected by this proposed modification.

Does not degrade the effectiveness of the code

Improves effectiveness of the code by clarifying the specific intent of the provision.

General Comment

G Pro	oponent	Joy Duperault	Submitted	5/27/2010	Attachments	No
-201	appropriate damaged e	e that equipment servin even if the building is no	g a building be at ot affected. This i	or above the elev is the way most bu	ation of the lowest floo ildings are built. In add	support for this proposal. It is r, otherwise equipment may be lition, if equipment is lower than the juired elevation don't apply.

[B] 309.2 Flood hazard. For structures located in flood hazard areas, the following systems and equipment shall be located at or above and installed as required by Section 1612.4 of the Florida Building Codethe design flood elevation.

Exception: The following systems are permitted to be located below the <u>design flood elevation</u> <u>the elevation</u> <u>required by Section 1612.4 of the Florida Building Code for utilities and attendant equipment</u> provided that the systems are designed and installed to prevent water from entering or accumulating within their components and the systems are constructed to resist hydrostatic and hydrodynamic loads and stresses, including the effects of buoyancy, during the occurrence of flooding up to such the design flood elevation.

1. All water service pipes.

2. Pump seals in individual water supply systems where the pump is located below the design flood elevation.

3. Covers on potable water wells shall be sealed, except where the top of the casing well or pipe sleeve is elevated to at least 1 foot (305 mm) above the design flood elevation.

4. All sanitary drainage piping.

5. All storm drainage piping.

6. Manhole covers shall be sealed, except where elevated to or above the design flood elevation.

7. All other plumbing fixtures, faucets, fixture fittings, piping systems and equipment.

8. Water heaters.

9. Vents and vent systems.

1			
Date Proposal Submitted	3/23/2010	Section	403.7
Chapter	4	TAC Recommendation	Pending Review
Affects HVHZ	No	Commission Action	Pending Review
Proponent	J Glenn-BASF	General Comments	No
Attachments	No	Alternate Language	No

Summary of Modification

Sections 403.5 and 403.6 do not exist in the IPC Renumber 403.7 to 403.5 and remove the "reserved"

Rationale

This will put the Florida Specific Amendment in the proper location.

Fiscal Impact Statement

Impact to local entity relative to enforcement of code

None

Impact to building and property owners relative to cost of compliance with code

None

Impact to industry relative to the cost of compliance with code

None

Requirements

Has a reasonable and substantial connection with the health, safety, and welfare of the general public None

NULLE

Strengthens or improves the code, and provides equivalent or better products, methods, or systems of construction No change

Does not discriminate against materials, products, methods, or systems of construction of demonstrated capabilities Does not discriminate

Does not degrade the effectiveness of the code

Does not degrade the code

403.5-5 Reserved.

403.5-6 Reserved.

<u>403.5</u> 403.7 Unisex toilet and bathing rooms. In assembly and mercantile occupancies, an accessible unisex toilet room shall be provided where an aggregate of six or more male and female water closets is required. In buildings of mixed occupancy, only those water closets required for the assembly or mercantile occupancy shall be used to determine the unisex toilet room requirement. In recreational facilities where separate-sex bathing rooms are provided, an accessible unisex bathing room shall be provided. Fixtures located within unisex toilet and bathing rooms shall be included in determining the number of fixtures provided in an occupancy.

Exception: Where each separate-sex bathing room has only one shower or bathtub fixture, a unisex bathing room is not required.

3647, 3648, 3649

Summary of Modification

Add exception to this section of code for a solar system that can have multiple PRV's. Discharging a 1/2" relief device in the solar loop into the T&P tank discharge should be acceptable.

Rationale

Maximum discharge flow through all the discharge piping can not be more than the maximum discharge of the largest relief device discharge size. If this relief device(thermal expansion valve) opens only a cup of water is discharged. Therefore, discharging this 1/2" relief device(thermal expansion valve) located in the solar loop into the T&P tank discharge meets all discharge sizing requirments.

Fiscal Impact Statement

Impact to local entity relative to enforcement of code

None, easily recognized.

Impact to building and property owners relative to cost of compliance with code

None

None

Impact to industry relative to the cost of compliance with code

Requirements

Has a reasonable and substantial connection with the health, safety, and welfare of the general public Meets all requirments like the discharge from a T&P valve.

Strengthens or improves the code, and provides equivalent or better products, methods, or systems of construction Provides equivalent products at a lower cost to the consumer.

Does not discriminate against materials, products, methods, or systems of construction of demonstrated capabilities No

Does not degrade the effectiveness of the code

No

504.6 Requirements for discharge piping. The discharge piping serving a pressure relief valve, temperature relief valve or combination thereof shall:

[™]₂1. Not be directly connected to the drainage system.

 \mathbb{L}_2 . Discharge through an air gap located in the same room as the water heater.

 \square_3 . Not be smaller than the diameter of the outlet of the valve served and shall discharge full size to the air gap.

 \square_4 . Serve a single relief device and shall not connect to piping serving any other relief device or equipment.

Exception: in a solar direct water heating system, the PRV discharge may connect directly into the T&P relief discharge drainage piping.

No change to the remaining text.

Date Proposal Submitted	3/23/2010	Section	604.1
Chapter	6	TAC Recommendation	Pending Review
Affects HVHZ	No	Commission Action	Pending Review
Proponent	J Glenn-BASF	General Comments	No
Attachments	No	Alternate Language	No

Summary of Modification

Retain the based code (IPC) language

Rationale

There is no Florida Specific justification for reference back to Table 603.1.

Fiscal Impact Statement

Impact to local entity relative to enforcement of code

None

Impact to building and property owners relative to cost of compliance with code

None

Impact to industry relative to the cost of compliance with code

None

Requirements

Has a reasonable and substantial connection with the health, safety, and welfare of the general public

None

Strengthens or improves the code, and provides equivalent or better products, methods, or systems of construction No change

Does not discriminate against materials, products, methods, or systems of construction of demonstrated capabilities Does not discriminate

Does not degrade the effectiveness of the code

Does not degrade the code

604.1 General. The design of the water distribution system shall conform to accepted engineering practice. Methods utilized to determine pipe sizes shall be approved. Table 603.1 shall be permitted to be used to size the water distribution system.

Date Proposal Submitted	2/19/2010	Section	606.1 (5)
Chapter	6	TAC Recommendation	Pending Review
Affects HVHZ	No	Commission Action	Pending Review
Proponent	James Bickford	General Comments	No
Attachments	No	Alternate Language	No

None

Summary of Modification

Adds text "supplying three or more branch intervals". This clarifies the intent of this code section to apply only to multistory buildings. Rationale

Adding the text "supplying three or more branch intervals" clarifies the original intent of this code section.

Fiscal Impact Statement

Impact to local entity relative to enforcement of code

none

Impact to building and property owners relative to cost of compliance with code

Will reduce cost when unnesessary valves are not required to be installed.

Impact to industry relative to the cost of compliance with code

none

Requirements

Has a reasonable and substantial connection with the health, safety, and welfare of the general public Clarifies unclear text in the code.

Strengthens or improves the code, and provides equivalent or better products, methods, or systems of construction Clarifies unclear text in the code.

Does not discriminate against materials, products, methods, or systems of construction of demonstrated capabilities Does not change current material requirements.

Does not degrade the effectiveness of the code

Clarifies unclear text in the code.

606.1 (5). On the top of every water down-feed pipe <u>supplying three or more</u> <u>branch intervals</u> in occupancies other than one- and two-family residential occupancies.

Date Proposal Submitted	3/23/2010	Section	611.2
Chapter	6	TAC Recommendation	Pending Review
Affects HVHZ	No	Commission Action	Pending Review
Proponent	J Glenn-BASF	General Comments	No
Attachments	No	Alternate Language	No

Summary of Modification

Retain the based code (IPC) language

Rationale

The base code language provides the same level of protection.

Fiscal Impact Statement

Impact to local entity relative to enforcement of code

None

Impact to building and property owners relative to cost of compliance with code

None

Impact to industry relative to the cost of compliance with code

None

Requirements

Has a reasonable and substantial connection with the health, safety, and welfare of the general public None

Strengthens or improves the code, and provides equivalent or better products, methods, or systems of construction

No change

Does not discriminate against materials, products, methods, or systems of construction of demonstrated capabilities Does not discriminate against anything

Does not degrade the effectiveness of the code

Does not degrade the code

611.2 Reverse osmosis drinking water treatment systems shall meet the requirements of NSF 58, Reverse Osmosis Drinking Water Treatment Units, or Water Quality Association Standard S 300, Point of Use Low Pressure Reverse Osmosis Drinking Water Systems.

611.3 When reduction of regulated health contaminants is claimed, such as inorganic or organic chemicals, or radiological substances, the reverse osmosis drinking water treatment unit must meet the requirements of NSF 58, Reverse Osmosis Drinking Water Treatment Systems.

611.4 Waste or discharge from reverse osmosis or other types of water treatment units must enter the drainage system through an air gap or be equipped with an equivalent backflow prevention device.

<u>611.2 Reverse osmosis systems.</u> The discharge from a reverse osmosis drinking water treatment unit shall enter the drainage system through an air gap or an air gap device that meets the requirements of NSF 58.

Date Proposal Submitted Chapter Affects HVHZ	4/1/2010 7 No	Section TAC Recommendation Commission Action	702.1 Pending Review Pending Review
Proponent	Allen Johnson	General Comments	No
Attachments	Yes	Alternate Language	No

702.1, 702.2, 702.3, 1102.1, 1102.2, 1102.3, 1102.4

Mods 4255, 4315, 4316, 4318, 4319, 4321

Summary of Modification

Modify the current building materials list to include Cure-In Place (CIPP) Thermosetting Resin Conduit Liner that meets ASTM F-1743, ASTM F-1216, ASTM D790, ASTM D638 and ASTM D543. in sections 702.1,702.2, 702.3, 1102.1, 1102.2, 1102.3 and 1102.4 for building drains and building sewer pipes.

Rationale

CIPP liners are an alternative to traditional pipe replacement that increases the flow charicteristics of the pipe.

Fiscal Impact Statement

Impact to local entity relative to enforcement of code

There are no additional costs relative to enforcement compared to tradional pipe replacement.

Impact to building and property owners relative to cost of compliance with code

There is a significant cost savings to building and property owners as well as reducing potentially hazardous materials left undisturbed as compared to traditional pipe replacement.

Impact to industry relative to the cost of compliance with code

There is no impact to the industry relative to the cost of compliance with code.

Requirements

Has a reasonable and substantial connection with the health, safety, and welfare of the general public

CIPP lining eliminates the destruction of landscapes and property as well as the health dangers associated with removing of sewer pipes in need of repair.

Strengthens or improves the code, and provides equivalent or better products, methods, or systems of construction

CIPP liners provide a repair solution that allows drain, waste and sewer pipes to be repaired without the digging and destruction required for traditional pipe repairs or replacement. CIPP liners are seamless and jointless, reducing the number of potential failures. More resistant to corrosion.

Does not discriminate against materials, products, methods, or systems of construction of demonstrated capabilities CIPP lining can be installed in any type of host pipe used for Building drains and Building sewer pipes for residential, commercial and industrial applications.

Does not degrade the effectiveness of the code

CIPP lining does not degrade the effectiveness of the code.

SECTION 702 MATERIALS

P4160 Text Modification

702.1 Above-ground sanitary drainage and vent pipe. Above-ground soil, waste and vent pipe shall conform to one of the standards listed in Table 702.1.

TABLE 702.1 ABOVE-GROUND DRAINAGE AND VENT PIPE

MATERIAL	STANDARD
Acrylonitrile butadiene styrene	
(ABS) plastic pipe in IPS	
diameters, including Schedule	ASTM D 2661; ASTM F 628;
40, DR 22 (PS 200) and DR	ASTM F 1488; CSA B181.1
24 (PS 140); with a solid,	
cellular core or composite	
wall	
Brass pipe	ASTM B 43
Cast-iron pipe	ASTM A 74; ASTM A 888;
	CISPI 301
Copper or copper-alloy pipe	ASTM B 42; ASTM B 302
	ASTM B 75; ASTM B 88;
(Type K, L, M or DWV)	ASTM B 251; ASTM B 306
Galvanized steel pipe	ASTM A 53
Glass pipe	ASTM C 1053
Polyolefin pipe	ASTM F 1412;
, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	CAN/CSA B181.3
Polyvinyl chloride (PVC)	
plastic pipe in IPS diameters,	
	ASTM D 2665; ASTM F 891;
(PS 200), and DR 24 (PS	ASTM F 1488; CSA B181.2
140); with a solid, cellular	
core or composite wall	
Polyvinyl chloride (PVC)	
plastic pipe with a 3.25-inch	ASTM D 2949, ASTM F 1488
O.D. and a solid, cellular	
core or composite wall	
Polyvinylidene fluoride (PVDF) plastic pipe	ASTM F 1673; CAN/CSA B181.3
Stainless steel drainage	
systems, Types 304 and 316L	ASME A112.
Cured-In Place Thermosetting Resin Conduit Liner (CIPP)	ASTM F 1743, ASTM F 1216, ASTM D 790, ASTM D 638, ASTM D 543

Designation: F 1743 - 96 (Reapproved 2003)

An American National Standard

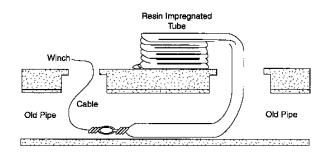
Standard Practice for Rehabilitation of Existing Pipelines and Conduits by Pulledin-Place Installation of Cured-in-Place Thermosetting Resin Pipe (CIPP)¹

This standard is issued under the fixed designation F 1743; the number immediately following the designation indicates the year of original adoption or, in the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. A superscript epsilon (ϵ) indicates an editorial change since the last revision or reapproval.

1. Scope

1.1 This practice describes the procedures for the reconstruction of pipelines and conduits (4 to 96 in. (10 to 244 cm) diameter) by the pulled-in-place installation of a resinimpregnated, flexible fabric tube into an existing conduit and secondarily inflated through the inversion of a calibration hose by the use of a hydrostatic head or air pressure (see Fig. 1). The resin is cured by circulating hot water or by the introduction of controlled steam into the tube. When cured, the finished cured-in-place pipe will be continuous and tight fitting. This reconstruction process may be used in a variety of gravity and pressure applications such as sanitary sewers, storm sewers, process piping, electrical conduits, and ventilation systems.

1.2 The values stated in inch-pound units are to be regarded as the standard. The values given in parentheses are for informational purposes only.


Note 1—There are no ISO standards covering the primary subject matter of this practice.

1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

2. Referenced Documents

2.1 ASTM Standards:

- D 543 Test Method of Resistance of Plastics to Chemical $\ensuremath{\mathsf{Reagents}}^2$
- D 638 Test Method for Tensile Properties of Plastics²
- D 790 Test Methods for Flexural Properties of Unreinforced and Reinforced Plastics and Electrical Insulating Materials²
- D 903 Test Method for Peel or Stripping Strength of Adhesive Bonds^3

Step 1 - Pull resin-impregnated tube into existing pipe.

Step 2 - Calibration hose inversion

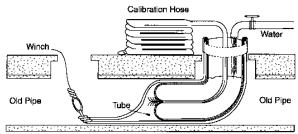


FIG. 1 Cured-in-Place Pipe Installation Methods

- D 1600 Terminology for Abbreviated Terms Relating to $\ensuremath{\text{Plastics}}^2$
- D 1682 Test Method for Breaking Load and Elongation of Textile ${\rm Fabrics}^4$
- D 3039/D3039M Test Method for Tensile Properties of Polymer Matrix Composite Materials⁵

⁴ Discontinued: See 1991 Annual Book of ASTM Standards, Vol 07.01. ⁵ Annual Book of ASTM Standards, Vol 15.03.

Copyright © ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959, United States.

1

Copyright by ASTM Int'l (all rights reserved); Reproduction authorized per License Agreement with ALLAN CLARK (NU FLOW TECHNOLOGIES (2000) IN); Fri Feb 4 10:22:01 EST 2005

2010 Triennial

¹ This practice is under the jurisdiction of ASTM Committee F-17 on Plastic Piping Systems and is the direct responsibility of Subcommittee F17.67 on Trenchless Plastic Pipeline Technology.

Current edition approved Feb. 10, 2003. Published April 2003. Last previous edition approved in 1996 as F1743-96.

² Annual Book of ASTM Standards, Vol 08.01.

³ Annual Book of ASTM Standards, Vol 15.06.

- D 3567 Practice for Determining Dimensions of Reinforced Thermosetting Resin Pipe (RTRP) and Fittings⁶
- D 4814 Specification for Automotive Spark—Ignition Engine Fuel^7
- D 5813 Specification for Cured-in-Place Thermosetting Resin Sewer Pipe^6
- F 412 Terminology Relating to Plastic Piping Systems⁶
- F 1216 Practice for Rehabilitation of Existing Pipelines and Conduits by the Inversion and Curing of a Resin-Impregnated Tube⁶
- 2.2 AWWA Standard:
- M28 Manual on Cleaning and Lining Water Mains⁸
- 2.3 NASSCO Standard:
- Recommended Specifications for Sewer Collection System Rehabilitation⁹

Note 2—An ASTM specification for cured-in-place pipe materials appropriate for use in this practice is under preparation and will be referenced in this practice when published.

3. Terminology

3.1 *General*—Definitions are in accordance with Terminology F 412. Abbreviations are in accordance with Terminology D 1600, unless otherwise indicated.

3.2 Definitions of Terms Specific to This Standard:

3.2.1 *calibration hose*—an impermeable bladder which is inverted within the resin-impregnated fabric tube by hydrostatic head or air pressure and may optionally be removed or remain in place as a permanent part of the installed cured-in-place pipe as described in 5.2.2.

3.2.2 cured-in-place pipe (CIPP)—a hollow cylinder consisting of a fabric tube with cured (cross-linked) thermosetting resin. Interior or exterior plastic coatings, or both, may be included. The CIPP is formed within an existing pipe and takes the shape of and fits tightly to the pipe.

3.2.3 delamination-separation of layers of the CIPP.

3.2.4 *dry spot*—an area of fabric of the finished CIPP which is deficient or devoid of resin.

3.2.5 *fabric tube*—flexible needled felt, or equivalent, woven or nonwoven material(s), or both, formed into a tubular shape which during the installation process is saturated with resin and holds the resin in place during the installation and curing process.

3.2.6 *inversion*—the process of turning the calibration hose inside out by the use of water pressure or air pressure.

3.2.7 *lift*—a portion of the CIPP that is a departure from the existing conduit wall forming a section of reverse curvature in the CIPP.

4. Significance and Use

4.1 This practice is for use by designers and specifiers, regulatory agencies, owners, and inspection organizations who are involved in the rehabilitation of conduits through the use of

a resin-impregnated fabric tube pulled-in-place through an existing conduit and secondarily inflated through the inversion of a calibration hose. Modifications may be required for specific job conditions.

5. Recommended Materials and Manufacture

5.1 *General*—The resins, fabric tube, tube coatings, or other materials, such as the permanent calibration hose when combined as a composite structure, shall produce CIPP that meets the requirements of this specification.

5.2 *CIPP Wall Composition*—The wall shall consist of a plastic coated fabric tube filled with a thermosetting (cross-linked) resin, and if used, a filler.

5.2.1 Fabric Tube-The fabric tube should consist of one or more layers of flexible needled felt, or equivalent, woven or nonwoven material(s), or both, capable of carrying resin, withstanding installation pressures, and curing temperatures. The material(s) of construction should be able to stretch to fit irregular pipe sections and negotiate bends. Longitudinal and circumferential joints between multiple layers of fabric should be staggered so as not to overlap. The outside layer of the fabric tube should have an impermeable flexible coating(s) whose function is to contain the resin during and after fabric tube impregnation. The outer coating(s) must facilitate monitoring of resin saturation of the material(s) of construction of the fabric tube. The fabric tube should be fabricated to a size that, when installed, will tightly fit the internal circumference and the length of the original conduit. Allowance should be made for circumferential and longitudinal stretching of the fabric tube during installation. As required, the fabric tube should meet minimum tensile strength requirements in the longitudinal and transverse directions as specified in 7.1. All the material(s) of construction for the fabric tube should be compatible with the resin system used.

5.2.2 Calibration Hose:

5.2.2.1 *Removable Calibration Hose*—The removable calibration hose should consist of an impermeable plastic, or impermeable plastic coating(s) on flexible woven or nonwoven material(s), or both, that do not absorb resin and are capable of being removed from the CIPP.

5.2.2.2 Permanent Calibration Hose-The permanent calibration hose should consist of an impermeable plastic coating on a flexible needled felt or equivalent woven or nonwoven material(s), or both, that are capable of absorbing resin and are of a thickness to become fully saturated with resin. The calibration hose should be translucent to facilitate postinstallation inspection. The calibration hose should be fabricated to a size that, when installed, will tightly fit the internal circumference and the length of the resin saturated fabric tube. Once inverted, the calibration hose becomes part of the fabric tube, and once properly cured, should bond permanently with the fabric tube. The properties of the calibration hose should meet minimum tensile strength requirements in the longitudinal and transverse directions as specified in 7.1. All the material(s) of construction for the calibration hose should be compatible with the resin system used.

5.2.3 *Resin*—A chemically resistant isophthalic based polyester, or vinyl ester thermoset resin and catalyst system or an

Copyright by ASTM Int'l (all rights reserved);

2

Reproduction authorized per License Agreement with ALLAN CLARK (NU FLOW TECHNOLOGIES (2000) IN); Fri Feb 4 10:22:01 EST 2005

⁶ Annual Book of ASTM Standards, Vol 08.04.

⁷ Annual Book of ASTM Standards, Vol 05.03.

⁸ Available from the American Water Works Association, 6666 W. Quincey Ave., Denver, CO 80235.

⁹ Available from the National Association of Sewer Service Companies, 101 Wymore Rd., Suite 501, Altamonte, FL 32714.

epoxy resin and hardener that is compatible with the installation process should be used. The resin should be able to cure in the presence of water and the initiation temperature for cure should be less than 180°F (82.2°C). The cured resin/fabric tube system, with or without the calibration hose, shall be expected to have as a minimum the initial structural properties given in Table 1. These physical properties should be determined in accordance with Section 8. The cured resin/fabric tube system, with or without the calibration hose, should meet the minimum chemical resistance requirements as specified in 7.2.

6. Installation Recommendations

6.1 Cleaning and Pre-Inspection:

6.1.1 Prior to entering access areas, such as manholes, and performing inspection or cleaning operations, an evaluation of the atmosphere to determine the presence of toxic or flammable vapors or lack of oxygen must be undertaken in accordance with local, state, or federal safety regulations.

6.1.2 Cleaning of Pipeline—All internal debris should be removed from the original pipeline. Gravity pipes should be cleaned with hydraulically powered equipment, high-velocity jet cleaners, or mechanically powered equipment in accordance with NASSCO Recommended Specifications for Sewer Collection System Rehabilitation. Pressure pipelines should be cleaned with cable attached devices or fluid propelled devices in accordance with AWWA M28.

6.1.3 Inspection of Pipelines—Inspection of pipelines should be performed by experienced personnel trained in locating breaks, obstacles, and service connections by closedcircuit television or man entry. The interior of the pipeline should be carefully inspected to determine the location of any conditions that may prevent proper installation of the impregnated tube, such as protruding service taps, collapsed or crushed pipe, and reductions in the cross-sectional area of more than 40 %. These conditions should be noted so that they can be corrected.

6.1.4 *Line Obstructions*—The original pipeline should be clear of obstructions such as solids, dropped joints, protruding service connections, crushed or collapsed pipe, and reductions in the cross-sectional area of more than 40 % that may hinder or prevent the installation of the resin-impregnated fabric tube. If inspection reveals an obstruction that cannot be removed by conventional sewer-cleaning equipment, then a point-repair excavation should be made to uncover and remove or repair the obstruction.

6.2 *Resin Impregnation*—The fabric tube should be totally impregnated with resin (wet-out) and run through a set of rollers separated by a space, calibrated under controlled conditions to ensure proper distribution of resin. The volume of

TABLE 1	CIPP	Initial	Structural	Pro	perties ⁴
IADEE I	V II I	mmmuu	onacianar		pernea

Property	Test Method –	Minimum	Value	
Flopeity	Test Method -	psi (MPa)		
Flexural strength	D 790	4 500	(31)	
Flexural modulus	D 790	250 000	(1724)	
Tensile strength (for pressure pipes only)	D 638	3 000	(21)	

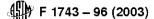
^AThe values in Table 1 are for field inspection. The purchaser should consult the manufacturer for the long-term structural properties.

resin used should be sufficient to fully saturate all the voids of the fabric tube material, as well as all resin-absorbing material of the calibration hose at nominal thickness and diameter. The volume should be adjusted by adding 3 to 15 % excess resin to allow for the change in resin volume due to polymerization, the change in resin volume due to thermal expansion or contraction, and resin migration through the perforations of the fabric tube and out onto the host pipe.

6.3 *Bypassing*—If bypassing of the flow is required around the sections of pipe designated for reconstruction, the bypass should be made by plugging the line at a point upstream of the pipe to be reconstructed and pumping the flow to a downstream point or adjacent system. The pump and bypass lines should be of adequate capacity and size to handle the flow. Services within this reach will be temporarily out of service.

6.3.1 Public advisory services shall notify all parties whose service laterals will be out of commission and advise against water usage until the main line is back in service.

6.4 Installation Methods:


6.4.1 Perforation of Resin-Impregnated Tube—Prior to pulling the resin-impregnated fabric tube in place, the outer impermeable plastic coating may optionally be perforated. When the resin-impregnated fabric tube is perforated, this should allow resin to be forced through the perforations and out against the existing conduit by the force of the hydrostatic head or air pressure against the inner wall of the calibration hose. The perforation should be done after fabric tube impregnation with a perforating roller device at the point of manufacture or at the jobsite. Perforations should be made on both sides of the lay-flat fabric tube covering the full circumference with a spacing no less than 1.5 in. (38.1 mm) apart. Perforating slits should be a minimum of 0.25 in. (6.4 mm) long.

6.4.2 Pulling Resin-Impregnated Tube into Position-The wet-out fabric tube should be pulled into place using a power winch. The saturated fabric tube should be pulled through an existing manhole or other approved access to fully extend to the next designated manhole or termination point. Care should be exercised not to damage the tube as a result of friction during pull-in, especially where curvilinear alignments, multilinear alignments, multiple offsets, protruding services, and other friction-producing host pipe conditions are present. Once the fabric tube is in place, it should be attached to a vertical standpipe so that the calibration hose can invert into the center of the resin-impregnated fabric tube. The vertical standpipe should be of sufficient height of water head to hold the fabric tube tight to the existing pipe wall, producing dimples at side connections. A device such as a dynamometer or load cell should be provided on the winch or cable to monitor the pulling force. Measure the overall elongation of the fabric tube after pull-in completion. The acceptable longitudinal elongation shall not be more than 5 % of the overall length measured after the calibration hose has been installed, or exceed the recommended pulling force.

6.4.3 Hydrostatic Head Calibration Hose Inversion—The calibration hose should be inserted into the vertical inversion standpipe, with the impermeable plastic membrane side out. At the lower end of the inversion standpipe, the calibration hose should be turned inside out and attached to the standpipe so

3

Copyright by ASTM Int'l (all rights reserved); Reproduction authorized per License Agreement with ALLAN CLARK (NU FLOW TECHNOLOGIES (2000) IN); Fri Feb 4 10:22:01 EST 2005

that a leakproof seal is created. The resin-impregnated fabric tube should also be attached to the standpipe so that the calibration hose can invert into the center of the resinimpregnated tube. The inversion head should be adjusted to be of sufficient height of water head to cause the calibration hose to invert from the initial point of inversion to the point of termination and hold the resin-impregnated fabric tube tight to the pipe wall, producing dimples at side connections. Care should be taken during the inversion so as not to overstress the felt fiber. At the request of the purchaser, the fabric tube manufacturer should provide information on the maximum allowable axial and longitudinal tensile stress for the fabric tube.

6.4.3.1 An alternative method of installation is top inversion. In this case, the calibration hose and resin-impregnated fabric tube are attached to a top ring. In this case, the tube itself forms the standpipe for generation of the hydrostatic head. Other methods of installation are also available and should be submitted for acceptance by the purchaser.

6.4.4 Using Air Pressure-The resin-impregnated fabric tube should be perforated as described in 6.4.1. Once perforated, the wet-out fabric tube should be pulled into place using a power winch as described in 6.4.2. The calibration hose should be inserted through the guide chute or tube of the pressure containment device in which the calibration hose has been loaded, with the impermeable plastic membrane side out. At the end of the guide chute, the calibration hose should be turned inside out and attached so that a leakproof seal is created. The resin-impregnated tube should also be attached to the guide chute so that the calibration hose can invert into the center of the resin-impregnated tube. The inversion air pressure should be adjusted to be of sufficient pressure to cause the calibration hose to invert from point of inversion to point of termination and hold the resin saturated fabric tube tight to the pipe wall, producing dimples at side connections. Care should be taken during the inversion so as not to overstress the woven and nonwoven materials. Take suitable precautions to eliminate hazards to personnel in the proximity of the construction when pressurized air is being used.

6.5 Lubricant During Installation—The use of a lubricant during installation is recommended to reduce friction during inversion. This lubricant should be poured into the fluid in the standpipe in order to coat the calibration hose during inversion. When air is used to invert the calibration hose, the lubricant should be applied directly to the calibration hose. The lubricant used should be a nontoxic, oil-based product that has no detrimental effects on the tube or boiler and pump system, and will not adversely affect the fluid to be transported.

6.6 Curing:

6.6.1 Using Circulating Heated Water—After installation is completed, suitable heat source and water recirculation equipment are required to circulate heated water throughout the section to uniformly raise the water temperature above the temperature required to effect a cure of the resin. The water temperature in the line during the cure period should be as recommended by the resin manufacturer or seller.

6.6.1.1 The heat source should be fitted with suitable monitors to measure the temperature of the incoming and

outgoing water supply. Temperature sensors should also be placed between the resin-impregnated tube and the host pipe invert at both termination points to monitor the temperatures during cure.

6.6.1.2 Initial cure will occur during temperature heat-up and is completed when exposed portions of the CIPP appear to be hard and sound and the remote temperature sensor indicates that the temperature is of a magnitude to realize an exotherm or cure in the resin. After initial cure is reached, the temperature should be raised to the post-cure temperature and held there for a period recommended by the resin manufacturer or seller. During post-cure, the recirculation of the water and cycling of the boiler to maintain the temperature continues. The curing of the CIPP must take into account the existing pipe material, the resin system, and ground conditions (temperature, moisture level, and thermal conductivity of soil).

6.6.2 Using Steam—After installation is completed, suitable steam-generating equipment is required to distribute steam throughout the pipe. The equipment should be capable of delivering steam throughout the section to uniformly raise the temperature within the pipe above the temperature required to effect a cure of the resin. The temperature in the line during the cure period should be as recommended by the resin manufacturer or seller.

6.6.2.1 The steam-generating equipment should be fitted with a suitable monitor to measure the temperature of the outgoing steam. Temperature sensors should also be placed between the resin-impregnated tube and the host pipe invert at both termination points to monitor the temperatures during cure.

6.6.2.2 Initial cure will occur during temperature heat-up and is completed when exposed portions of the new pipe appear to be hard and sound and the remote temperature sensor indicates that the temperature is of a magnitude to realize an exotherm or cure in the resin. After initial cure is reached, the temperature should be raised to the post-cure temperature and held there for a period recommended by the resin manufacturer or seller, during which time the distribution and control of steam to maintain the temperature continues. The curing of the CIPP must take into account the existing pipe material, the resin system, and ground conditions (temperature, moisture level, and thermal conductivity of soil).

6.6.3 *Required Pressures*—As required by the purchase agreement, the estimated maximum and minimum pressure required to hold the flexible tube tight against the existing conduit during the curing process should be provided by the seller and shall be increased to include consideration of external ground water, if present. Once the cure has started and dimpling for laterals is completed, the required pressures should be maintained until the cure has been completed. For water or steam, the pressure should be maintained within the estimated maximum and minimum pressure during the curing process. If the steam pressure or hydrostatic head drops below the recommended minimum during the cure, the CIPP should be inspected for lifts or delaminations and evaluated for its ability to fully meet the applicable requirements of 6.8 and Section 8.

6.7 Cool-Down:

Copyright by ASTM Int'l (all rights reserved);

Reproduction authorized per License Agreement with ALLAN CLARK (NU FLOW TECHNOLOGIES (2000) IN); Fri Feb 4 10:22:01 EST 2005

P4160 Text Modification

6.7.1 Using Cool Water after Heated Water Cure—The new CIPP should be cooled to a temperature below 100°F (38°C) before relieving the static head in the inversion standpipe. Cool-down may be accomplished by the introduction of cool water into the inversion standpipe to replace water being drained from a small hole made in the downstream end. Take care to cool down the CIPP in a controlled manner, as recommended by the resin manufacturer or the seller. Care should be taken to release the static head so that a vacuum will not be developed that could damage the newly installed CIPP.

6.7.2 Using Cool Water after Steam Cure—The new CIPP should be cooled to a temperature below 100°F (38°C) before relieving the internal pressure within the section. Cool-down may be accomplished by the introduction of cool water into the section to replace the mixture of air and steam being drained from a small hole made in the downstream end. Take care to cool the CIPP in a controlled manner as recommended by the resin manufacturer or the seller. Care should be taken to release the air pressure so that a vacuum will not be developed that could damage the newly installed CIPP.

6.8 Workmanship—The finished CIPP should be continuous over the entire length of an installation and be free of dry spots, lifts, and delaminations. If these conditions are present, the CIPP will be evaluated for its ability to meet the applicable requirements of Section 8. Where the CIPP does not meet the requirements of Section 8 or specifically stated requirements of the purchase agreement, or both, the affected portions of CIPP will be removed and replaced with an equivalent repair.

6.8.1 If the CIPP does not fit tightly against the original pipe at its termination point(s), the full circumference of the CIPP exiting the existing host pipe or conduit should be sealed by filling with a resin mixture compatible with the CIPP.

6.9 Service Connections—After the new CIPP has been installed, the existing active (or inactive) service connections should be reinstated. This should generally be done without excavation, and in the case of non-man entry pipes, from the interior of the pipeline by means of a television camera and a remote-control cutting device. Service connections shall be reinstated to at least 90 % of the original area as it enters the host pipe or conduit.

Note 3—In many cases, a seal is provided where the formed CIPP dimples at service connections. However, this practice should not be construed to provide a 100 % watertight seal at all service connections. If total elimination of infiltration and inflow is desired, other means, which are beyond the scope of this practice, may be necessary to seal service connections and to rehabilitate service lines and manholes.

7. Material Requirements

7.1 Fabric Tube Strength—If required by the purchaser in the purchase agreement, the fabric tube, and seam (if applicable) as a quality control test, when tested in accordance with Test Method D 1682 shall have a minimum tensile strength of 750 psi (5 MPa) in both the longitudinal and transverse directions.

7.2 Chemical Resistance:

7.2.1 Chemical Resistance Requirements—The cured resin/ fabric tube matrix, with or without the calibration hose, shall be evaluated in a laminate form for qualification testing of long-term chemical exposure to a variety of chemical effluents and should be evaluated in a manner consistent with 6.4.1 of Specification D 5813. The specimens shall be capable of exposure to the solutions in Table 2 at a temperature of $73.4 \pm 3.6^{\circ}$ F (23 \pm 2°C), with a percentage retention of flexural modulus of elasticity of at least 80% after one year exposure. Flexural properties, after exposure to the chemical solution(s), shall be based on dimensions of the specimens after exposure.

7.2.2 Chemical Resistance Procedures—The CIPP laminates should be constructed of identical fabric and resin components that will be used for anticipated in-field installations. The cured resin/fabric tube laminates, with or without the calibration hose should be exposed to the chemical agents in a manner consistent with Test Method D 543. The edges of the test coupons should be left exposed and not treated with resin, unless otherwise specified by the purchaser. The specimen thicknesses should be in the range of 0.125 to 0.25 in. (3.2 to 6.4 mm), with the sample dimensions suitable for preparing a minimum of five specimens for flexural testing as described in 8.1.4. Flexural properties after exposure to the chemical solutions should be based on the dimensions of the specimen after exposure.

7.2.2.1 For applications other than standard domestic sewerage, it is recommended that chemical resistance tests be conducted with actual samples of the fluid flowing in the pipe. These tests can also be accomplished by depositing CIPP test samples in the active pipe.

7.2.2.2 As required by the purchaser, additional chemical resistance requirements for the CIPP may be evaluated as described in 6.4 of Specification D 5813.

8. Recommended Inspection Practices

8.1 For each installation length designated by the purchaser in the purchase agreement, the preparation of CIPP samples is required from one or both of the following two methods:

8.1.1 The samples should be cut from a section of cured CIPP at an intermediate manhole or at the termination point that has been installed through a like diameter section of pipe or other tubular restraining means which has been held in place by a suitable heat sink, such as sandbags.

8.1.2 The sample should be fabricated from material taken from the fabric tube and the resin/catalyst system used, and cured in a clamped mold, placed in the downtube when heated circulated water is used, and in the silencer when steam is used. When the CIPP is constructed of oriented continuous or discontinuous fibers to enhance the physical properties of the CIPP, this method of sample preparation is recommended in order to allow testing in the axial (that is, along the length) and

TABLE 2	Minimum Chemical Resistance Requirements t	ior
	Domestic Sanitary Sewer Applications	

/	11
Chemical Solution	Concentration, %
Nitric acid	1
Sulfuric acid	5
ASTM Fuel C ^A	100
Vegetable oil ^ø	100
Detergent ^C	0.1
Soap ^č	0.1

^AIn accordance with Specification D 4814 ^BCottonseed, com, or mineral oil.

^CIn accordance with Test Method D 543.

Copyright by ASTM Int'l (all rights reserved);

Reproduction authorized per License Agreement with ALLAN CLARK (NU FLOW TECHNOLOGIES (2000) IN); Fri Feb 4 10:22:01 EST 2005

circumferential (that is, hoop) directions of the CIPP. This method is also recommended when large-diameter CIPP is installed that may otherwise not be prepared with a tubular restraint.

8.1.3 The CIPP samples for each of these cases should be large enough to provide a minimum of three specimens and a recommended five specimens for flexural testing and also for tensile testing for internal pressure applications. The flexural and tensile specimens should be prepared in a manner consistent with 8.3.1 of Specification D 5813. For flexural and tensile properties, the full wall thickness of the CIPP samples shall be tested. Any plastic coatings or other CIPP layers not included in the structural design of the CIPP may be carefully ground off of the specimens prior to testing. If the sample is irregular or distorted such that proper testing is inhibited, attempts shall be made to machine any wall thickness from the inside pipe face of the sample. Any machining of the outside pipe face of the sample shall be done carefully so as to minimize the removal of material from the outer structural wall of the sample. Individual specimens should be clearly marked for easy identification and retained until final disposition or CIPP acceptance, or both, has been given.

8.1.4 Short-Term Flexural (Bending) Properties-The initial tangent flexural modulus of elasticity and flexural stress should be measured for gravity and pressure pipe applications in accordance with Test Method D 790, Test Method I, Procedure A and should meet the requirements of Table 1 within the 16:1 length to depth constraints. For specimens greater than 0.5 in. (12.7 mm) in depth, the width-to-depth ratio of the specimen should be increased to a minimum of 1:1 and should not exceed 4:1. For samples prepared in accordance with 8.1.1, determine flexural properties in the axial direction where the length of the test specimen is cut along the longitudinal axis of the pipe. Special consideration should be given to the preparation of flexural specimens to ensure opposite sides are parallel and adjacent edges are perpendicular. Flexural specimens should be tested such that the inside pipe face is tested in tension and the outside pipe face is in compression.

8.1.4.1 Fiber-Reinforced CIPP Flexural Properties— Where the CIPP is reinforced with oriented continuous or discontinuous fibers to enhance the physical properties of the CIPP, specimens should be sampled in accordance with 8.1.2, and flexural properties should be determined in accordance with 8.1.3 along the longitudinal axis and circumferential axis of the installed CIPP.

8.1.5 Short-Term Tensile Properties—The tensile strength should be measured for pressure pipe applications in accordance with Test Method D 638. Specimens should be prepared in accordance with Types I, II, and III of Fig. 1 of Test Method D 638. Specimens greater than 0.55 in. (14 mm) thick should maintain all dimensions for a Type III specimen, except the thickness will be that of the CIPP sample obtained. The rate of specimen testing should be carried out in accordance with Table 1 of Test Method D 638. Specimens should be prepared in accordance with 8.1.1 and tested along the longitudinal axis of the installed CIPP.

8.1.5.1 Fiber-Reinforced CIPP Tensile Testing—Where the CIPP is reinforced with oriented continuous or discontinuous

fibers to enhance the physical properties of the CIPP, specimens should be sampled in accordance with 8.1.2 and tensile properties should be determined in accordance with Test Method D 3039 and tested along the longitudinal axis and circumferential axis of the installed CIPP.

8.1.6 CIPP Wall Thickness-The method of obtaining CIPP wall thickness measurements should be determined in a manner consistent with 8.1.2 of Specification D 5813. Thickness measurements should be made in accordance with Practice D 3567 for samples prepared in accordance with 8.1. Make a minimum of eight measurements at evenly spaced intervals around the circumference of the sample to ensure that minimum and maximum thicknesses have been determined. Deduct from the measured values the thickness of any plastic coatings or CIPP layers not included in the structural design of the CIPP. The average thickness should be calculated using all measured values and shall meet or exceed minimum design thickness as agreed upon between purchaser and seller. The minimum wall thickness at any point shall not be less than 87.5 % of the specified design thickness as agreed upon between purchaser and seller.

8.2 Gravity Pipe Leakage Testing-If required by the owner in the contract documents or purchase order, gravity pipes should be tested using an exfiltration test method where the CIPP is plugged at both ends and filled with water. This test should take place after the CIPP has cooled down to ambient temperature. This test is limited to pipe lengths with no service laterals and diameters of 36 in. or less. The allowable water exfiltration for any length of pipe between termination points should not exceed 50 U.S. gallons per inch of internal pipe diameter per mile per day, providing that all air has been bled from the line. During exfiltration testing, the maximum internal pipe pressure at the lowest end should not exceed 10 ft (3.0 m) of water or 4.3 psi (29.7 kPa), and the water level inside of the inversion standpipe should be 2 ft (0.6 m) higher than the top of the pipe or 2 ft (0.6 m) higher than groundwater level, whichever is greater. The leakage quantity should be gaged by the water level in a temporary standpipe placed in the upstream plug. The test should be conducted for a minimum of 1 h.

Note 4—It is impractical to test pipes above 36 in. diameter for leakage due to the technology available in the pipe rehabilitation industry. Post inspection of larger pipes will detect major leaks or blockages.

8.3 Pressure Pipe Testing—If required by the purchaser in the purchase agreement, pressure pipes should be subjected to a hydrostatic pressure test. A pressure and leakage test at twice the known working pressure or at the working pressure plus 50 psi, whichever is less, is recommended. The pressure should initially be held at the known working pressure for a period not less than 12 h, then increased to the test pressure for an additional period of 2 to 3 h to allow for stabilization of the CIPP. After this period, the pressure test will begin for a minimum of 1 h. The allowable leakage during the pressure test should be 20 U.S. gallons per inch of internal pipe diameter per mile per day, providing that all air has been evacuated from the line prior to testing and the CIPP has cooled down to ambient temperature.

Note 5—The allowable leakage for gravity and pressure pipe testing is a function of water loss at the end seals and trapped air in the pipe.

Copyright by ASTM Int'l (all rights reserved);

Reproduction authorized per License Agreement with ALLAN CLARK (NU FLOW TECHNOLOGIES (2000) IN); Fri Feb 4 10:22:01 EST 2005

🕮 F 1743 – 96 (2003)

8.4 Delamination Test—If required by the purchaser in the purchase agreement, a delamination test should be performed on each installation length specified. CIPP samples should be prepared in accordance with 8.1.2, except that a portion of the fabric tube material in the sample should be dry and isolated from the resin in order to separate tube layers for testing (consult the tube manufacturer for further information). Delamination testing should be in accordance with Test Method D 903 with the following exceptions:

8.4.1 The rate of travel of the power-actuated grip should be 1 in. (25 mm)/min.

8.4.2 Five test specimens should be tested for each installation specified.

8.4.3 The thickness of the test specimen should be minimized, but should be sufficient to adequately test delamination of nonhomogeneous CIPP layers.

8.5 The peel or stripping strength between any nonhomogeneous layers of the CIPP laminate should be a minimum of 10 lb/in. (178.60 g/mm) for typical CIPP applications. Note 6-The purchaser may designate the similar layers between which the delamination test will be conducted.

Note 7—For additional details on conducting the delamination test, contact the seller.

8.6 Inspection and Acceptance—The installation may be inspected visually if appropriate, or by closed-circuit television if visual inspection cannot be accomplished. Variations from true line and grade may be inherent because of the conditions of the original piping. No infiltration of groundwater should be observed. All service entrances should be accounted for and be unobstructed.

9. Keywords

9.1 cured-in-place pipe; installation—underground; plastic pipe—thermoset; rehabilitation; thermosetting resin pipe

APPENDIX

(Nonmandatory Information)

X1. DESIGN CONSIDERATIONS

X1.1 General Guidelines—The design thickness of the CIPP is a function of the resin, materials of construction of the fabric tube, and the condition of the existing pipe. In addition, depending on the condition of the pipe, the design thickness of

the CIPP may also be a function of groundwater, soil type, and influence of live loading surrounding the host pipe. For guidance relating to terminology of piping conditions and related design equations, see Appendix X1 of Practice F 1216.

ASTM International takes no position respecting the validity of any patent rights asserted in connection with any item mentioned in this standard. Users of this standard are expressly advised that determination of the validity of any such patent rights, and the risk of infringement of such rights, are entirely their own responsibility.

This standard is subject to revision at any time by the responsible technical committee and must be reviewed every five years and if not revised, either reapproved or withdrawn. Your comments are invited either for revision of this standard or for additional standards and should be addressed to ASTM International Headquarters. Your comments will receive careful consideration at a meeting of the responsible technical committee, which you may attend. If you feel that your comments have not received a fair hearing you should make your views known to the ASTM Committee on Standards, at the address shown below.

This standard is copyrighted by ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959, United States. Individual reprints (single or multiple copies) of this standard may be obtained by contacting ASTM at the above address or at 610-832-9585 (phone), 610-832-9555 (fax), or service@astm.org (e-mail); or through the ASTM website (www.astm.org).

Copyright by ASTM Int'l (all rights reserved);

7

Reproduction authorized per License Agreement with ALLAN CLARK (NU FLOW TECHNOLOGIES (2000) IN); Fri Feb 4 10:22:01 EST 2005

Amendment to ASTM F1743-96 Author: Doug Kleweno of DGK Technologies

Douglas Kleweno 25124 235th Way SE Maple Valley, WA 93038-5905

May 22, 2001

Whom it may concern:

I am writing this letter at the request of Mr. David Ratliff (Nu Flow Installer, Abilene, Texas) in order to provide clarification for ASTM F1743 "Standard Practice for Rehabilitation of Existing Pipelines and Conduits by Pulled-in-Place Installation of Cured-In-Place Thermosetting Resin Pipe (CIPP)" and similar pulled-in-place products. In my previous position I was the Technical Manager for InLiner USA CIPP products and am the author of ASTM F1743. I have also been involved in editing ASTM F1216 and ASTM D5813, which are also CIPP installation and material specifications, respectively.

When writing an ASTM specification it is necessary to provide enough minimum requirements so that the product can meet or exceed engineering and design criteria. However, ASTM specifications also must be generalized enough to accommodate the majority of products and processes that may want to reference it. F1743 was generally written for most CIPP applications where heated cures predominate in the market. There are many resin applications for CIPP and other products (boat building, automotive, heavy truck) where ambient cure resin formulations are common and used successfully. Technically speaking, an ambient cure formulation for CIPP does initiate at a temperature less that 180F, which is recommended in Section 5.2.3 or F1743.

More critical to CIPP and other applications is whether the product (CIPP in this case) meets the minimum initial structural property recommendations. The minimum properties for the CIPP were provided in Section 4.2.3 of ASTM F1743 and this is probably the most important aspect for the product to meet the requirements for external hydrostatic or soil loading that may surround the pipe. These minimum properties are the numbers by which the minimum design thickness is determined for the installed CIPP or part liner.

As a side note it is my experience that the curing strategy is chosen for handling and transportation purposes. Large liners for CIPP require long catalyzed stability so the product can be processed, transported, and installed. For short runs or tubes processed at a job site, it was common to use ambient or semi-ambient cure formulations to reduce the time at the job site and the associated inconvenience to the surrounding community.

I hope this has provided some additional clarification.

Doug Kleweno (423) 413-8529

August 24, 2005

	TES	Γ REP	ORT
Send To:	1P790 NU FLOW TECHNOLOGIES 2000 INC. 1010 THORNTON ROAD SOUTH OSHAWA ON L1J 7E2 CANADA Attn: MR. BOB FOWLE		
Customer:		Plant:	1P790 NU FLOW TECHNOLOGIES 2000 INC. 1010 THORNTON ROAD SOUTH OSHAWA ON L1J 7E2 CANADA Attn: MR. BOB FOWLE
Test Type Thank you	Description: Nu Flow #2000 Pipe Lining - Liner e: AA - Annual Collection u for having your product tested by NSF. psed report details the result of the testing per		your product. Your program representative will
Test Type Thank you The enclo be contac	e: AA - Annual Collection	formed on y	your product. Your program representative will les concerning the status of this product. lestions pertaining to your product.
Test Type Thank you The enclo be contac	e: $AA - Annual Collection$ u for having your product tested by NSF. osed report details the result of the testing per cting you in the near future if there are any re- o not hesitate to contact us if you have any in	formed on y	
Test Type Thank you The enclo be contac Please de	e: $AA - Annual Collection$ u for having your product tested by NSF. osed report details the result of the testing per cting you in the near future if there are any re- o not hesitate to contact us if you have any in	formed on y maining issu	estions pertaining to your product.
Test Type Thank you The enclo be contact Please du Reviewen CC: Progr Progr Regio	 AA - Annual Collection u for having your product tested by NSF. used report details the result of the testing percting you in the near future if there are any reliance or not hesitate to contact us if you have any in Atabek Ciechanowski - Manager, Engineering Lat am: 010 - Plumbing and Related Programs am Rep: AMY CHOKSEY 	formed on y maining issu	estions pertaining to your product.
Test Type Thank you The enclo be contact Please du Reviewen CC: Progr Progr Regio	 AA - Annual Collection u for having your product tested by NSF. used report details the result of the testing percting you in the near future if there are any reliance or not hesitate to contact us if you have any in Atabek Ciechanowski - Manager, Engineering Latram: 010 - Plumbing and Related Programs am Rep: AMY CHOKSEY un: 01 - Domestic 	formed on y maining issu	estions pertaining to your product.

General Information

	DCC Number / Tracking ID PL042	49		
	Family Code A			
	Material Type Epoxy			
	Monitor Code A			
	Performance Standard F1216			
	Performance Standard Year 2003			
	Product Identifier Part A Batch # 0	30004 Part B Bate	5 # 040405 3	
	Sample Description Liner	SUSUA, FAILD DAL	al # 040405_3	
	Trade Designation Nu Flow #2000	Pipe Lining		
ample Id:	S-0000161582 Nu Flow #2000 Pipe Lining - Liner			
escription: ampled Date:	05/19/2005			
eceived Date:	05/23/2005			
esting Paramet	er er er e		Result	Units *
ngineering Lab		·		
Gravity Pipe	Leakage Test			
Initial wate	er column:		10	feet
Final wate	r column:		10	feet
Time:			60	minutes
Leakage r	ate:		0	g/in/day
Required a	naximum leakage rate:		50	g/in/day
Actual leal	kage rate:	_	0	g/in/day
	be Leakage Test:		Pass	
Flex Modulus	· · · · · · · · · · · · · · · · · · ·			· · · · · · · · ·
	s conditioned for		40	hours
	s conditioned at		73	degrees F
Relative h			50	%
	erature Required		73	degrees F
	erature Actual		73	degrees F
	crosshead speed		0.22	in/min
Deflection	sshead speed		0.22	in/min
Specimen	1		<5	<u>%</u>
Specimen			280000	psi
Specimen			315000	psi
Specimen			275000	psi
Specimen			242000	psi
-	Average Modulus (minimum)	2500	100 psi	
	erage Modulus		274000	psi
Flex Modu		PAS		F * .
Flexural Stre				
Specimen	s conditioned for		40	hours
	s conditioned at		73	degrees F
Relative H	umidity		50	percent
Test Temp	erature		73	degrees F
Cross Hea	d Speed		0.22	in/min.
Specimen	1 Flexural Strength		6280	psi
	2 Flexural Strength		6480	psi
Specimen				
	3 Flexural Strength		6010	psi

FI20050824120213

J-00012414

Page 2 of 4

This report shall not be reproduced, except in its entirety, without the written approval of NSF. This report does not represent NSF Certification or authorization to use the NSF Mark. Authorization to use the NSF Mark is limited to products appearing in the Company's Official NSF Listing, (www.nsf.org). The results relate only to those items tested.

Original reports bear a light blue NSF Mark and border.

÷

esting Parameter	Result	Units - · · ·
ngineering Lab (Cont'd)		
Specimen 5 Flexural Strength	5820	psi
Average Flexural Strength	5960	psi
Required Flexural Strength	4500	psi
Flexural Strength Test	Pass	
Strength, Tensile		
Specimens conditioned for	40	hours
Specimens conditioned at	73	degrees F
Relative humidity	50	%
Test Temperature	73	degrees F
Actual Crosshead Speed	0.2	in/min.
Required Crosshead Speed	0.2	in/min.
Specimen 1: Tensile Strength	3930	psi
Specimen 2: Tensile Strength	4540	psi
Specimen 3: Tensile Strength	4010	psi
Specimen 4: Tensile Strength	3690	psi
Specimen 5: Tensile Strength	3920	psi
Req'd Average Tensile Strength (minimum)	3000	
Actual Average Tensile Strength	4020	psi
Tensile Strength Test	PASS	
Specimen Fabrication	· · · · · · · · · · · · · · · · · · ·	
Specimen Fabrication	COMPLETE	
Time	1	hours
Technician	3356	

J-00012414

Page 3 of 4

This report shall not be reproduced, except in its entirety, without the written approval of NSF. This report does not represent NSF Certification or authorization to use the NSF Mark. Authorization to use the NSF Mark is limited to products appearing in the Company's Official NSF Listing, (www.nsf.org). The results relate only to those items tested.

Page: 3

	ld	Address
All work performed at:	NSF_AA	NSF International
	_	789 Dixboro Road
		Ann Arbor MI 48105-0140
		USA

References to Testing Procedures:

NSF Reference	Parameter / Test Description
P3084	Gravity Pipe Leakage Test
P3122	Flex Modulus
P3123	Flexural Strength Test
P3127	Strength, Tensile
P3172	Specimen Fabrication

FI20050824120213 Final_Std

This report shall not be reproduced, except in its entirety, without the written approval of NSF. This report does not represent NSF Certification or authorization to use the NSF Mark. Authorization to use the NSF Mark is limited to products appearing in the Company's Official NSF Listing, (www.nsf.org). The results relate only to those items tested.

Original reports hear a light blue NSF Mark and border.

Page 4 of 4

NU FLOW TECHNOLOGIES 2000 INC. 1010 Thornton Road South Oshawa, Ontario L1J 7E2

Laboratory Report

002/002

Page:

Attention	Client's Order Numbe	er Date		Report Numbe
Sinan Omari	9282	16 March 2	2007	07-845
Client's Material / Product Des	cription Da	ate Sample Received	M	aterial / Product Specification
(1) Sample		06 March 2007		ASTM D5813-04
Test Performed			Result	
1. <u>Tangent Flexural Modulus</u>				
 (ASTM D790) Crosshead speed: 0.0 1000 lbf Load cell 2 inch support span L/D = 16 Specimen Geometry: 1/8" x 1/2" x 4" 5 specimens tested Units: psi 		ample # 1 2 3 4 <u>5</u> Average	384400 420900 304600 425400 <u>397100</u> 386500	250,000 psi Minimum
 2. <u>Flexural Strength</u> (ASTM D790) 5 specimens tested Units: psi 3. <u>Wall Thickness</u>		ample # 1 2 3 4 <u>5</u> Average <u>Side A</u> 3.56	6 070 6 670 5 400 6 200 <u>6 440</u> 6 160 <u>Side B</u> 3.26	4,500 psi Minimum
 Units: mm Four measurements ta each side 	ken on	3.56 3.62 3.67 3.79	3.26 3.45 3.50 3.74	

Telephone (905) 673-9899

Address 2421 Drew Road Mississauga, Ontario Canada L55 1A1

Facsimile (905) 673-8394

E-mail aahlawat@acuren.com

Web www.acuren.com

(0

Corrine Dimnik, B.Sc. Certified Inspector.

Dr. Erhan Ulvan, Ph. D, P. Eng.,

Laboratory Manager.

() The in whole or in part, of th name of Acuren shall r or damage whole or in part, of the test or substance of this information shall reare only to the name of Acuren shall not be used in any manner in connection with the take, offenin or damage resulting directly or and product error, negligence or ensist report date. (v) Work which may progress beyond thirty-one (31) days in durati (v) Any test soutonuced ha an approved subcontractor are highlighted above (1) (v) Any test soutonuced has an approved subcontractor are highlighted above (1) and the source of the antiproved subcontractor are highlighted above (1) and the source of the antiproved subcontractor are highlighted above (1) and the source of the antiproved subcontractor are highlighted above (1) and the source of the antiproved subcontractor are highlighted above (1) and the source of the antiproved subcontractor are highlighted above (1) and the source of the antiproved subcontractor are highlighted above (1) and the source of the antiproved subcontractor are highlighted above (1) and the source of the antiproved subcontractor are highlighted above (1) and the source of the antiproved subcontractor are highlighted above (1) and the source of the antiproved subcontractor are highlighted above (1) and the source of the antiproved subcontractor are highlighted above (1) and the source of the antiproved subcontractor are highlighted above (1) and the source of the antiproved subcontractor are highlighted above (1) and the source of the antiproved subcontractor are highlighted above (1) and the source of the antiproved subcontractor are highlighted above (1) and the source of the antiproved subcontractor are highlighted above (1) and the source of the antiproved subcontractor are highlighted above (1) and the source of the antiproved subcontractor are highlighted above (1) and the source of with the sale, offering or (m) (iv) Un e (")

Flow Comparisons

Comparison between a new pipe and a rehabilitated pipe

Diam	leter	Hazen Williams	Flow for new pipe	Thickness of Liner (mm)	Resulting internal	Hazen Williams	Flow for rehabilitated	% Loss
(m)	(in)	Coefficient (C)	1 ነ አ		diameter (m)	coefficient (C)		
0.15	6	140	0.27	2	0.146	140	0.25	-6.86
0.20	8	140	0.57	2	0.196	140	0.54	-5.17
0.30	10	140	1.02	2	0.246	140	0.98	-4.15
0.40	12	140	1.65	2.5	0.295	140	1.57	-4.32

Comparison between old pipe and a rehabilitated pipe

Old F Diam	· 1		Flow for old pipe	Thickness of Liner (mm)	Old Pipe diameter (m)	Hazen Williams coefficient (C)	Flow for rehabilitated pipe	% Increase
(m)			(m ³ /s)	,		(-)	(m ³ /s)	
0.13	<u> </u>	60	0.08	2	0.146	140	0.25	216.63
0.18	8	60	0.18	2	0.196	140	0.54	191.91
0.23	10	60	0.35	2	0.246	140	0.98	178.48
0.27	12	60	0.53	2.5	0.295	140	1.57	194.52

702.1, 702.3, 1102.1, 1102.2, 1102.3, 1102.4

Summary of Modification

Modify the current building materials list to include Cure-In Place (CIPP) Thermosetting Resin Conduit Liner that meets ASTM F-1743, ASTM F-1216, ASTM D790, ASTM D638 and ASTM D543. in sections 702.1,702.2, 702.3, 1102.1, 1102.2, 1102.3 and 1102.4 for building drains and building sewer pipes.

Rationale

CIPP liners are an alternative to traditional pipe replacement that increases the flow charicteristics of the pipe.

Fiscal Impact Statement

Impact to local entity relative to enforcement of code

There are no additional costs relative to enforcement compared to traditional replacement.

Impact to building and property owners relative to cost of compliance with code

There is a significant cost savings to building and property owners as well as reducing potentially hazardous materials left undisturbed as compared to traditional pipe replacement CIPP liners are seamless and jointless, reducing the number of potential failures.

Impact to industry relative to the cost of compliance with code

There is no impact to the industry relative to the cost of compliance with code.

Requirements

Has a reasonable and substantial connection with the health, safety, and welfare of the general public

CIPP lining eliminates the destruction of landscapes and property as well as the health dangers associated with removing of sewer pipes in need of repair.

Strengthens or improves the code, and provides equivalent or better products, methods, or systems of construction

CIPP liners provide a repair solution that allows drain, waste and sewer pipes to be repaired without the digging and destruction required for traditional pipe repairs or replacement.

Does not discriminate against materials, products, methods, or systems of construction of demonstrated capabilities CIPP lining can be installed in any type of host pipe used for Building drains and Building sewer pipes for residential, commercial

and industrial applications.

Does not degrade the effectiveness of the code

CIPP lining does not degrade the effectiveness of the code.

SECTION 702 MATERIALS

P4255 Text Modification

702.1 Above-ground sanitary drainage and vent pipe. Above-ground soil, waste and vent pipe shall conform to one of the standards listed in Table 702.1.

TABLE 702.1 ABOVE-GROUND DRAINAGE AND VENT PIPE

MATERIAL	STANDARD
Acrylonitrile butadiene styrene (ABS) plastic pipe in IPS diameters, including Schedule 40, DR 22 (PS 200) and DR 24 (PS 140); with a solid, cellular core or composite wall	ASTM D 2661; ASTM F 628; ASTM F 1488; CSA B181.1
Brass pipe	ASTM B 43
Cast-iron pipe	ASTM A 74; ASTM A 888; CISPI 301
Copper or copper-alloy pipe	ASTM B 42; ASTM B 302
Copper or copper-alloy tubing (Type K, L, M or DWV)	ASTM B 75; ASTM B 88; ASTM B 251; ASTM B 306
Galvanized steel pipe	ASTM A 53
Glass pipe	ASTM C 1053
Polyolefin pipe	ASTM F 1412; CAN/CSA B181.3
Polyvinyl chloride (PVC) plastic pipe in IPS diameters, including schedule 40, DR 22 (PS 200), and DR 24 (PS 140); with a solid, cellular core or composite wall	ASTM D 2665; ASTM F 891; ASTM F 1488; CSA B181.2
Polyvinyl chloride (PVC) plastic pipe with a 3.25-inch O.D. and a solid, cellular core or composite wall	ASTM D 2949, ASTM F 1488
Polyvinylidene fluoride (PVDF) plastic pipe	ASTM F 1673; CAN/CSA B181.3
Stainless steel drainage systems, Types 304 and 316L	ASME A112.
Cured-In Place Thermosetting Resin Conduit Liner (CIPP)	<u>ASTM F1743, ASTM F1216, ASTM</u> <u>D790, ASTM D638, ASTM D543</u>

Designation: F 1743 - 96 (Reapproved 2003)

An American National Standard

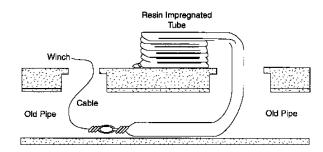
Standard Practice for Rehabilitation of Existing Pipelines and Conduits by Pulledin-Place Installation of Cured-in-Place Thermosetting Resin Pipe (CIPP)¹

This standard is issued under the fixed designation F 1743; the number immediately following the designation indicates the year of original adoption or, in the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. A superscript epsilon (ϵ) indicates an editorial change since the last revision or reapproval.

1. Scope

1.1 This practice describes the procedures for the reconstruction of pipelines and conduits (4 to 96 in. (10 to 244 cm) diameter) by the pulled-in-place installation of a resinimpregnated, flexible fabric tube into an existing conduit and secondarily inflated through the inversion of a calibration hose by the use of a hydrostatic head or air pressure (see Fig. 1). The resin is cured by circulating hot water or by the introduction of controlled steam into the tube. When cured, the finished cured-in-place pipe will be continuous and tight fitting. This reconstruction process may be used in a variety of gravity and pressure applications such as sanitary sewers, storm sewers, process piping, electrical conduits, and ventilation systems.

1.2 The values stated in inch-pound units are to be regarded as the standard. The values given in parentheses are for informational purposes only.


Note 1—There are no ISO standards covering the primary subject matter of this practice.

1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

2. Referenced Documents

2.1 ASTM Standards:

- D 543 Test Method of Resistance of Plastics to Chemical $\ensuremath{\mathsf{Reagents}}^2$
- D 638 Test Method for Tensile Properties of Plastics²
- D 790 Test Methods for Flexural Properties of Unreinforced and Reinforced Plastics and Electrical Insulating Materials²
- D 903 Test Method for Peel or Stripping Strength of Adhesive Bonds^3

Step 1 - Pull resin-impregnated tube into existing pipe.

Step 2 - Calibration hose inversion

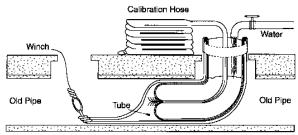


FIG. 1 Cured-in-Place Pipe Installation Methods

- D 1600 Terminology for Abbreviated Terms Relating to $\ensuremath{\text{Plastics}}^2$
- D 1682 Test Method for Breaking Load and Elongation of Textile ${\rm Fabrics}^4$
- D 3039/D3039M Test Method for Tensile Properties of Polymer Matrix Composite Materials⁵

⁴ Discontinued: See 1991 Annual Book of ASTM Standards, Vol 07.01. ⁵ Annual Book of ASTM Standards, Vol 15.03.

Copyright © ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959, United States.

1

Copyright by ASTM Int'l (all rights reserved); Reproduction authorized per License Agreement with ALLAN CLARK (NU FLOW TECHNOLOGIES (2000) IN); Fri Feb 4 10:22:01 EST 2005

¹ This practice is under the jurisdiction of ASTM Committee F-17 on Plastic Piping Systems and is the direct responsibility of Subcommittee F17.67 on Trenchless Plastic Pipeline Technology.

Current edition approved Feb. 10, 2003. Published April 2003. Last previous edition approved in 1996 as F1743-96.

² Annual Book of ASTM Standards, Vol 08.01.

³ Annual Book of ASTM Standards, Vol 15.06.

- D 3567 Practice for Determining Dimensions of Reinforced Thermosetting Resin Pipe (RTRP) and Fittings⁶
- D 4814 Specification for Automotive Spark-Ignition Engine Fuel⁷
- D 5813 Specification for Cured-in-Place Thermosetting Resin Sewer Pipe⁶
- F 412 Terminology Relating to Plastic Piping Systems⁶
- F 1216 Practice for Rehabilitation of Existing Pipelines and Conduits by the Inversion and Curing of a Resin-Impregnated Tube⁶
- 2.2 AWWA Standard:
- M28 Manual on Cleaning and Lining Water Mains⁸
- 2.3 NASSCO Standard:
- Recommended Specifications for Sewer Collection System Rehabilitation⁵

Note 2-An ASTM specification for cured-in-place pipe materials appropriate for use in this practice is under preparation and will be referenced in this practice when published.

3. Terminology

3.1 General-Definitions are in accordance with Terminology F 412. Abbreviations are in accordance with Terminology D 1600, unless otherwise indicated.

3.2 Definitions of Terms Specific to This Standard:

3.2.1 calibration hose-an impermeable bladder which is inverted within the resin-impregnated fabric tube by hydrostatic head or air pressure and may optionally be removed or remain in place as a permanent part of the installed cured-inplace pipe as described in 5.2.2.

3.2.2 cured-in-place pipe (CIPP)-a hollow cylinder consisting of a fabric tube with cured (cross-linked) thermosetting resin. Interior or exterior plastic coatings, or both, may be included. The CIPP is formed within an existing pipe and takes the shape of and fits tightly to the pipe.

3.2.3 delamination-separation of layers of the CIPP.

3.2.4 dry spot—an area of fabric of the finished CIPP which is deficient or devoid of resin.

3.2.5 fabric tube-flexible needled felt, or equivalent, woven or nonwoven material(s), or both, formed into a tubular shape which during the installation process is saturated with resin and holds the resin in place during the installation and curing process.

3.2.6 inversion-the process of turning the calibration hose inside out by the use of water pressure or air pressure.

3.2.7 lift-a portion of the CIPP that is a departure from the existing conduit wall forming a section of reverse curvature in the CIPP.

4. Significance and Use

4.1 This practice is for use by designers and specifiers, regulatory agencies, owners, and inspection organizations who are involved in the rehabilitation of conduits through the use of a resin-impregnated fabric tube pulled-in-place through an existing conduit and secondarily inflated through the inversion of a calibration hose. Modifications may be required for specific job conditions.

5. Recommended Materials and Manufacture

5.1 General-The resins, fabric tube, tube coatings, or other materials, such as the permanent calibration hose when combined as a composite structure, shall produce CIPP that meets the requirements of this specification.

5.2 CIPP Wall Composition-The wall shall consist of a plastic coated fabric tube filled with a thermosetting (crosslinked) resin, and if used, a filler.

5.2.1 Fabric Tube-The fabric tube should consist of one or more layers of flexible needled felt, or equivalent, woven or nonwoven material(s), or both, capable of carrying resin, withstanding installation pressures, and curing temperatures. The material(s) of construction should be able to stretch to fit irregular pipe sections and negotiate bends. Longitudinal and circumferential joints between multiple layers of fabric should be staggered so as not to overlap. The outside layer of the fabric tube should have an impermeable flexible coating(s) whose function is to contain the resin during and after fabric tube impregnation. The outer coating(s) must facilitate monitoring of resin saturation of the material(s) of construction of the fabric tube. The fabric tube should be fabricated to a size that, when installed, will tightly fit the internal circumference and the length of the original conduit. Allowance should be made for circumferential and longitudinal stretching of the fabric tube during installation. As required, the fabric tube should meet minimum tensile strength requirements in the longitudinal and transverse directions as specified in 7.1. All the material(s) of construction for the fabric tube should be compatible with the resin system used.

5.2.2 Calibration Hose:

5.2.2.1 Removable Calibration Hose-The removable calibration hose should consist of an impermeable plastic, or impermeable plastic coating(s) on flexible woven or nonwoven material(s), or both, that do not absorb resin and are capable of being removed from the CIPP.

5.2.2.2 Permanent Calibration Hose-The permanent calibration hose should consist of an impermeable plastic coating on a flexible needled felt or equivalent woven or nonwoven material(s), or both, that are capable of absorbing resin and are of a thickness to become fully saturated with resin. The calibration hose should be translucent to facilitate postinstallation inspection. The calibration hose should be fabricated to a size that, when installed, will tightly fit the internal circumference and the length of the resin saturated fabric tube. Once inverted, the calibration hose becomes part of the fabric tube, and once properly cured, should bond permanently with the fabric tube. The properties of the calibration hose should meet minimum tensile strength requirements in the longitudinal and transverse directions as specified in 7.1. All the material(s) of construction for the calibration hose should be compatible with the resin system used.

5.2.3 Resin-A chemically resistant isophthalic based polyester, or vinyl ester thermoset resin and catalyst system or an

Copyright by ASTM Int'l (all rights reserved);

Reproduction authorized per License Agreement with ALLAN CLARK (NU FLOW TECHNOLOGIES (2000) IN); Fri Feb 4 10:22:01 EST 2005

⁶ Annual Book of ASTM Standards, Vol 08.04.

Annual Book of ASTM Standards, Vol 05.03

⁸ Available from the American Water Works Association, 6666 W. Quincey Ave., Denver, CO 80235.

Available from the National Association of Sewer Service Companies, 101 Wymore Rd., Suite 501, Altamonte, FL 32714.

epoxy resin and hardener that is compatible with the installation process should be used. The resin should be able to cure in the presence of water and the initiation temperature for cure should be less than 180°F (82.2°C). The cured resin/fabric tube system, with or without the calibration hose, shall be expected to have as a minimum the initial structural properties given in Table 1. These physical properties should be determined in accordance with Section 8. The cured resin/fabric tube system, with or without the calibration hose, should meet the minimum chemical resistance requirements as specified in 7.2.

6. Installation Recommendations

6.1 Cleaning and Pre-Inspection:

6.1.1 Prior to entering access areas, such as manholes, and performing inspection or cleaning operations, an evaluation of the atmosphere to determine the presence of toxic or flammable vapors or lack of oxygen must be undertaken in accordance with local, state, or federal safety regulations.

6.1.2 *Cleaning of Pipeline*—All internal debris should be removed from the original pipeline. Gravity pipes should be cleaned with hydraulically powered equipment, high-velocity jet cleaners, or mechanically powered equipment in accordance with NASSCO Recommended Specifications for Sewer Collection System Rehabilitation. Pressure pipelines should be cleaned with cable attached devices or fluid propelled devices in accordance with AWWA M28.

6.1.3 Inspection of Pipelines—Inspection of pipelines should be performed by experienced personnel trained in locating breaks, obstacles, and service connections by closedcircuit television or man entry. The interior of the pipeline should be carefully inspected to determine the location of any conditions that may prevent proper installation of the impregnated tube, such as protruding service taps, collapsed or crushed pipe, and reductions in the cross-sectional area of more than 40 %. These conditions should be noted so that they can be corrected.

6.1.4 *Line Obstructions*—The original pipeline should be clear of obstructions such as solids, dropped joints, protruding service connections, crushed or collapsed pipe, and reductions in the cross-sectional area of more than 40 % that may hinder or prevent the installation of the resin-impregnated fabric tube. If inspection reveals an obstruction that cannot be removed by conventional sewer-cleaning equipment, then a point-repair excavation should be made to uncover and remove or repair the obstruction.

6.2 *Resin Impregnation*—The fabric tube should be totally impregnated with resin (wet-out) and run through a set of rollers separated by a space, calibrated under controlled conditions to ensure proper distribution of resin. The volume of

TABLE 1	CIPP	Initial	Structural	Pro	nerties ⁴
IADLL I		nnnai	Juddial	FIU	pernea

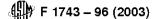
Property	Test Method –	Minimum Value		
Flopeity	Test Method -	psi	(MPa)	
Flexural strength Flexural modulus Tensile strength (for pressure pipes only)	D 790 D 790 D 638	4 500 250 000 3 000	(31) (1724) (21)	

^AThe values in Table 1 are for field inspection. The purchaser should consult the manufacturer for the long-term structural properties. resin used should be sufficient to fully saturate all the voids of the fabric tube material, as well as all resin-absorbing material of the calibration hose at nominal thickness and diameter. The volume should be adjusted by adding 3 to 15 % excess resin to allow for the change in resin volume due to polymerization, the change in resin volume due to thermal expansion or contraction, and resin migration through the perforations of the fabric tube and out onto the host pipe.

6.3 *Bypassing*—If bypassing of the flow is required around the sections of pipe designated for reconstruction, the bypass should be made by plugging the line at a point upstream of the pipe to be reconstructed and pumping the flow to a downstream point or adjacent system. The pump and bypass lines should be of adequate capacity and size to handle the flow. Services within this reach will be temporarily out of service.

6.3.1 Public advisory services shall notify all parties whose service laterals will be out of commission and advise against water usage until the main line is back in service.

6.4 Installation Methods:


6.4.1 Perforation of Resin-Impregnated Tube—Prior to pulling the resin-impregnated fabric tube in place, the outer impermeable plastic coating may optionally be perforated. When the resin-impregnated fabric tube is perforated, this should allow resin to be forced through the perforations and out against the existing conduit by the force of the hydrostatic head or air pressure against the inner wall of the calibration hose. The perforation should be done after fabric tube impregnation with a perforating roller device at the point of manufacture or at the jobsite. Perforations should be made on both sides of the lay-flat fabric tube covering the full circumference with a spacing no less than 1.5 in. (38.1 mm) apart. Perforating slits should be a minimum of 0.25 in. (6.4 mm) long.

6.4.2 Pulling Resin-Impregnated Tube into Position-The wet-out fabric tube should be pulled into place using a power winch. The saturated fabric tube should be pulled through an existing manhole or other approved access to fully extend to the next designated manhole or termination point. Care should be exercised not to damage the tube as a result of friction during pull-in, especially where curvilinear alignments, multilinear alignments, multiple offsets, protruding services, and other friction-producing host pipe conditions are present. Once the fabric tube is in place, it should be attached to a vertical standpipe so that the calibration hose can invert into the center of the resin-impregnated fabric tube. The vertical standpipe should be of sufficient height of water head to hold the fabric tube tight to the existing pipe wall, producing dimples at side connections. A device such as a dynamometer or load cell should be provided on the winch or cable to monitor the pulling force. Measure the overall elongation of the fabric tube after pull-in completion. The acceptable longitudinal elongation shall not be more than 5 % of the overall length measured after the calibration hose has been installed, or exceed the recommended pulling force.

6.4.3 Hydrostatic Head Calibration Hose Inversion—The calibration hose should be inserted into the vertical inversion standpipe, with the impermeable plastic membrane side out. At the lower end of the inversion standpipe, the calibration hose should be turned inside out and attached to the standpipe so

3

Copyright by ASTM Int'l (all rights reserved); Reproduction authorized per License Agreement with ALLAN CLARK (NU FLOW TECHNOLOGIES (2000) IN); Fri Feb 4 10:22:01 EST 2005

that a leakproof seal is created. The resin-impregnated fabric tube should also be attached to the standpipe so that the calibration hose can invert into the center of the resinimpregnated tube. The inversion head should be adjusted to be of sufficient height of water head to cause the calibration hose to invert from the initial point of inversion to the point of termination and hold the resin-impregnated fabric tube tight to the pipe wall, producing dimples at side connections. Care should be taken during the inversion so as not to overstress the felt fiber. At the request of the purchaser, the fabric tube manufacturer should provide information on the maximum allowable axial and longitudinal tensile stress for the fabric tube.

6.4.3.1 An alternative method of installation is top inversion. In this case, the calibration hose and resin-impregnated fabric tube are attached to a top ring. In this case, the tube itself forms the standpipe for generation of the hydrostatic head. Other methods of installation are also available and should be submitted for acceptance by the purchaser.

6.4.4 Using Air Pressure-The resin-impregnated fabric tube should be perforated as described in 6.4.1. Once perforated, the wet-out fabric tube should be pulled into place using a power winch as described in 6.4.2. The calibration hose should be inserted through the guide chute or tube of the pressure containment device in which the calibration hose has been loaded, with the impermeable plastic membrane side out. At the end of the guide chute, the calibration hose should be turned inside out and attached so that a leakproof seal is created. The resin-impregnated tube should also be attached to the guide chute so that the calibration hose can invert into the center of the resin-impregnated tube. The inversion air pressure should be adjusted to be of sufficient pressure to cause the calibration hose to invert from point of inversion to point of termination and hold the resin saturated fabric tube tight to the pipe wall, producing dimples at side connections. Care should be taken during the inversion so as not to overstress the woven and nonwoven materials. Take suitable precautions to eliminate hazards to personnel in the proximity of the construction when pressurized air is being used.

6.5 Lubricant During Installation—The use of a lubricant during installation is recommended to reduce friction during inversion. This lubricant should be poured into the fluid in the standpipe in order to coat the calibration hose during inversion. When air is used to invert the calibration hose, the lubricant should be applied directly to the calibration hose. The lubricant used should be a nontoxic, oil-based product that has no detrimental effects on the tube or boiler and pump system, and will not adversely affect the fluid to be transported.

6.6 Curing:

6.6.1 Using Circulating Heated Water—After installation is completed, suitable heat source and water recirculation equipment are required to circulate heated water throughout the section to uniformly raise the water temperature above the temperature required to effect a cure of the resin. The water temperature in the line during the cure period should be as recommended by the resin manufacturer or seller.

6.6.1.1 The heat source should be fitted with suitable monitors to measure the temperature of the incoming and

outgoing water supply. Temperature sensors should also be placed between the resin-impregnated tube and the host pipe invert at both termination points to monitor the temperatures during cure.

6.6.1.2 Initial cure will occur during temperature heat-up and is completed when exposed portions of the CIPP appear to be hard and sound and the remote temperature sensor indicates that the temperature is of a magnitude to realize an exotherm or cure in the resin. After initial cure is reached, the temperature should be raised to the post-cure temperature and held there for a period recommended by the resin manufacturer or seller. During post-cure, the recirculation of the water and cycling of the boiler to maintain the temperature continues. The curing of the CIPP must take into account the existing pipe material, the resin system, and ground conditions (temperature, moisture level, and thermal conductivity of soil).

6.6.2 Using Steam—After installation is completed, suitable steam-generating equipment is required to distribute steam throughout the pipe. The equipment should be capable of delivering steam throughout the section to uniformly raise the temperature within the pipe above the temperature required to effect a cure of the resin. The temperature in the line during the cure period should be as recommended by the resin manufacturer or seller.

6.6.2.1 The steam-generating equipment should be fitted with a suitable monitor to measure the temperature of the outgoing steam. Temperature sensors should also be placed between the resin-impregnated tube and the host pipe invert at both termination points to monitor the temperatures during cure.

6.6.2.2 Initial cure will occur during temperature heat-up and is completed when exposed portions of the new pipe appear to be hard and sound and the remote temperature sensor indicates that the temperature is of a magnitude to realize an exotherm or cure in the resin. After initial cure is reached, the temperature should be raised to the post-cure temperature and held there for a period recommended by the resin manufacturer or seller, during which time the distribution and control of steam to maintain the temperature continues. The curing of the CIPP must take into account the existing pipe material, the resin system, and ground conditions (temperature, moisture level, and thermal conductivity of soil).

6.6.3 *Required Pressures*—As required by the purchase agreement, the estimated maximum and minimum pressure required to hold the flexible tube tight against the existing conduit during the curing process should be provided by the seller and shall be increased to include consideration of external ground water, if present. Once the cure has started and dimpling for laterals is completed, the required pressures should be maintained until the cure has been completed. For water or steam, the pressure should be maintained within the estimated maximum and minimum pressure during the curing process. If the steam pressure or hydrostatic head drops below the recommended minimum during the cure, the CIPP should be inspected for lifts or delaminations and evaluated for its ability to fully meet the applicable requirements of 6.8 and Section 8.

6.7 Cool-Down:

Copyright by ASTM Int'l (all rights reserved);

Reproduction authorized per License Agreement with ALLAN CLARK (NU FLOW TECHNOLOGIES (2000) IN); Fri Feb 4 10:22:01 EST 2005

P4255 Text Modification

6.7.1 Using Cool Water after Heated Water Cure—The new CIPP should be cooled to a temperature below 100°F (38°C) before relieving the static head in the inversion standpipe. Cool-down may be accomplished by the introduction of cool water into the inversion standpipe to replace water being drained from a small hole made in the downstream end. Take care to cool down the CIPP in a controlled manner, as recommended by the resin manufacturer or the seller. Care should be taken to release the static head so that a vacuum will not be developed that could damage the newly installed CIPP.

6.7.2 Using Cool Water after Steam Cure—The new CIPP should be cooled to a temperature below 100°F (38°C) before relieving the internal pressure within the section. Cool-down may be accomplished by the introduction of cool water into the section to replace the mixture of air and steam being drained from a small hole made in the downstream end. Take care to cool the CIPP in a controlled manner as recommended by the resin manufacturer or the seller. Care should be taken to release the air pressure so that a vacuum will not be developed that could damage the newly installed CIPP.

6.8 Workmanship—The finished CIPP should be continuous over the entire length of an installation and be free of dry spots, lifts, and delaminations. If these conditions are present, the CIPP will be evaluated for its ability to meet the applicable requirements of Section 8. Where the CIPP does not meet the requirements of Section 8 or specifically stated requirements of the purchase agreement, or both, the affected portions of CIPP will be removed and replaced with an equivalent repair.

6.8.1 If the CIPP does not fit tightly against the original pipe at its termination point(s), the full circumference of the CIPP exiting the existing host pipe or conduit should be sealed by filling with a resin mixture compatible with the CIPP.

6.9 Service Connections—After the new CIPP has been installed, the existing active (or inactive) service connections should be reinstated. This should generally be done without excavation, and in the case of non-man entry pipes, from the interior of the pipeline by means of a television camera and a remote-control cutting device. Service connections shall be reinstated to at least 90 % of the original area as it enters the host pipe or conduit.

Note 3—In many cases, a seal is provided where the formed CIPP dimples at service connections. However, this practice should not be construed to provide a 100 % watertight seal at all service connections. If total elimination of infiltration and inflow is desired, other means, which are beyond the scope of this practice, may be necessary to seal service connections and to rehabilitate service lines and manholes.

7. Material Requirements

7.1 Fabric Tube Strength—If required by the purchaser in the purchase agreement, the fabric tube, and seam (if applicable) as a quality control test, when tested in accordance with Test Method D 1682 shall have a minimum tensile strength of 750 psi (5 MPa) in both the longitudinal and transverse directions.

7.2 Chemical Resistance:

7.2.1 Chemical Resistance Requirements—The cured resin/ fabric tube matrix, with or without the calibration hose, shall be evaluated in a laminate form for qualification testing of long-term chemical exposure to a variety of chemical effluents and should be evaluated in a manner consistent with 6.4.1 of Specification D 5813. The specimens shall be capable of exposure to the solutions in Table 2 at a temperature of $73.4 \pm 3.6^{\circ}$ F (23 \pm 2°C), with a percentage retention of flexural modulus of elasticity of at least 80% after one year exposure. Flexural properties, after exposure to the chemical solution(s), shall be based on dimensions of the specimens after exposure.

7.2.2 Chemical Resistance Procedures—The CIPP laminates should be constructed of identical fabric and resin components that will be used for anticipated in-field installations. The cured resin/fabric tube laminates, with or without the calibration hose should be exposed to the chemical agents in a manner consistent with Test Method D 543. The edges of the test coupons should be left exposed and not treated with resin, unless otherwise specified by the purchaser. The specimen thicknesses should be in the range of 0.125 to 0.25 in. (3.2 to 6.4 mm), with the sample dimensions suitable for preparing a minimum of five specimens for flexural testing as described in 8.1.4. Flexural properties after exposure to the chemical solutions should be based on the dimensions of the specimen after exposure.

7.2.2.1 For applications other than standard domestic sewerage, it is recommended that chemical resistance tests be conducted with actual samples of the fluid flowing in the pipe. These tests can also be accomplished by depositing CIPP test samples in the active pipe.

7.2.2.2 As required by the purchaser, additional chemical resistance requirements for the CIPP may be evaluated as described in 6.4 of Specification D 5813.

8. Recommended Inspection Practices

8.1 For each installation length designated by the purchaser in the purchase agreement, the preparation of CIPP samples is required from one or both of the following two methods:

8.1.1 The samples should be cut from a section of cured CIPP at an intermediate manhole or at the termination point that has been installed through a like diameter section of pipe or other tubular restraining means which has been held in place by a suitable heat sink, such as sandbags.

8.1.2 The sample should be fabricated from material taken from the fabric tube and the resin/catalyst system used, and cured in a clamped mold, placed in the downtube when heated circulated water is used, and in the silencer when steam is used. When the CIPP is constructed of oriented continuous or discontinuous fibers to enhance the physical properties of the CIPP, this method of sample preparation is recommended in order to allow testing in the axial (that is, along the length) and

TABLE 2	Minimum Chemical Resistance Requirements for	
	Domestic Sanitary Sewer Applications	

Chemical Solution	Concentration, %		
Nitric acid	1		
Sulfuric acid	5		
ASTM Fuel C ^a	100		
Vegetable oil ^e	100		
Detergent ^C	0.1		
Soap ^C	0.1		

^AIn accordance with Specification D 4814 ^BCottonseed, com, or mineral oil.

^CIn accordance with Test Method D 543.

Copyright by ASTM Int'l (all rights reserved);

Reproduction authorized per License Agreement with ALLAN CLARK (NU FLOW TECHNOLOGIES (2000) IN); Fri Feb 4 10:22:01 EST 2005

circumferential (that is, hoop) directions of the CIPP. This method is also recommended when large-diameter CIPP is installed that may otherwise not be prepared with a tubular restraint.

8.1.3 The CIPP samples for each of these cases should be large enough to provide a minimum of three specimens and a recommended five specimens for flexural testing and also for tensile testing for internal pressure applications. The flexural and tensile specimens should be prepared in a manner consistent with 8.3.1 of Specification D 5813. For flexural and tensile properties, the full wall thickness of the CIPP samples shall be tested. Any plastic coatings or other CIPP layers not included in the structural design of the CIPP may be carefully ground off of the specimens prior to testing. If the sample is irregular or distorted such that proper testing is inhibited, attempts shall be made to machine any wall thickness from the inside pipe face of the sample. Any machining of the outside pipe face of the sample shall be done carefully so as to minimize the removal of material from the outer structural wall of the sample. Individual specimens should be clearly marked for easy identification and retained until final disposition or CIPP acceptance, or both, has been given.

8.1.4 Short-Term Flexural (Bending) Properties-The initial tangent flexural modulus of elasticity and flexural stress should be measured for gravity and pressure pipe applications in accordance with Test Method D 790, Test Method I, Procedure A and should meet the requirements of Table 1 within the 16:1 length to depth constraints. For specimens greater than 0.5 in. (12.7 mm) in depth, the width-to-depth ratio of the specimen should be increased to a minimum of 1:1 and should not exceed 4:1. For samples prepared in accordance with 8.1.1, determine flexural properties in the axial direction where the length of the test specimen is cut along the longitudinal axis of the pipe. Special consideration should be given to the preparation of flexural specimens to ensure opposite sides are parallel and adjacent edges are perpendicular. Flexural specimens should be tested such that the inside pipe face is tested in tension and the outside pipe face is in compression.

8.1.4.1 Fiber-Reinforced CIPP Flexural Properties— Where the CIPP is reinforced with oriented continuous or discontinuous fibers to enhance the physical properties of the CIPP, specimens should be sampled in accordance with 8.1.2, and flexural properties should be determined in accordance with 8.1.3 along the longitudinal axis and circumferential axis of the installed CIPP.

8.1.5 Short-Term Tensile Properties—The tensile strength should be measured for pressure pipe applications in accordance with Test Method D 638. Specimens should be prepared in accordance with Types I, II, and III of Fig. 1 of Test Method D 638. Specimens greater than 0.55 in. (14 mm) thick should maintain all dimensions for a Type III specimen, except the thickness will be that of the CIPP sample obtained. The rate of specimen testing should be carried out in accordance with Table 1 of Test Method D 638. Specimens should be prepared in accordance with 8.1.1 and tested along the longitudinal axis of the installed CIPP.

8.1.5.1 Fiber-Reinforced CIPP Tensile Testing—Where the CIPP is reinforced with oriented continuous or discontinuous

fibers to enhance the physical properties of the CIPP, specimens should be sampled in accordance with 8.1.2 and tensile properties should be determined in accordance with Test Method D 3039 and tested along the longitudinal axis and circumferential axis of the installed CIPP.

8.1.6 CIPP Wall Thickness-The method of obtaining CIPP wall thickness measurements should be determined in a manner consistent with 8.1.2 of Specification D 5813. Thickness measurements should be made in accordance with Practice D 3567 for samples prepared in accordance with 8.1. Make a minimum of eight measurements at evenly spaced intervals around the circumference of the sample to ensure that minimum and maximum thicknesses have been determined. Deduct from the measured values the thickness of any plastic coatings or CIPP layers not included in the structural design of the CIPP. The average thickness should be calculated using all measured values and shall meet or exceed minimum design thickness as agreed upon between purchaser and seller. The minimum wall thickness at any point shall not be less than 87.5 % of the specified design thickness as agreed upon between purchaser and seller.

8.2 Gravity Pipe Leakage Testing-If required by the owner in the contract documents or purchase order, gravity pipes should be tested using an exfiltration test method where the CIPP is plugged at both ends and filled with water. This test should take place after the CIPP has cooled down to ambient temperature. This test is limited to pipe lengths with no service laterals and diameters of 36 in. or less. The allowable water exfiltration for any length of pipe between termination points should not exceed 50 U.S. gallons per inch of internal pipe diameter per mile per day, providing that all air has been bled from the line. During exfiltration testing, the maximum internal pipe pressure at the lowest end should not exceed 10 ft (3.0 m) of water or 4.3 psi (29.7 kPa), and the water level inside of the inversion standpipe should be 2 ft (0.6 m) higher than the top of the pipe or 2 ft (0.6 m) higher than groundwater level, whichever is greater. The leakage quantity should be gaged by the water level in a temporary standpipe placed in the upstream plug. The test should be conducted for a minimum of 1 h.

Note 4—It is impractical to test pipes above 36 in. diameter for leakage due to the technology available in the pipe rehabilitation industry. Post inspection of larger pipes will detect major leaks or blockages.

8.3 Pressure Pipe Testing—If required by the purchaser in the purchase agreement, pressure pipes should be subjected to a hydrostatic pressure test. A pressure and leakage test at twice the known working pressure or at the working pressure plus 50 psi, whichever is less, is recommended. The pressure should initially be held at the known working pressure for a period not less than 12 h, then increased to the test pressure for an additional period of 2 to 3 h to allow for stabilization of the CIPP. After this period, the pressure test will begin for a minimum of 1 h. The allowable leakage during the pressure test should be 20 U.S. gallons per inch of internal pipe diameter per mile per day, providing that all air has been evacuated from the line prior to testing and the CIPP has cooled down to ambient temperature.

Note 5—The allowable leakage for gravity and pressure pipe testing is a function of water loss at the end seals and trapped air in the pipe.

Copyright by ASTM Int'l (all rights reserved);

Reproduction authorized per License Agreement with ALLAN CLARK (NU FLOW TECHNOLOGIES (2000) IN); Fri Feb 4 10:22:01 EST 2005

∰ F 1743 – 96 (2003)

8.4 Delamination Test—If required by the purchaser in the purchase agreement, a delamination test should be performed on each installation length specified. CIPP samples should be prepared in accordance with 8.1.2, except that a portion of the fabric tube material in the sample should be dry and isolated from the resin in order to separate tube layers for testing (consult the tube manufacturer for further information). Delamination testing should be in accordance with Test Method D 903 with the following exceptions:

8.4.1 The rate of travel of the power-actuated grip should be 1 in. (25 mm)/min.

8.4.2 Five test specimens should be tested for each installation specified.

8.4.3 The thickness of the test specimen should be minimized, but should be sufficient to adequately test delamination of nonhomogeneous CIPP layers.

8.5 The peel or stripping strength between any nonhomogeneous layers of the CIPP laminate should be a minimum of 10 lb/in. (178.60 g/mm) for typical CIPP applications. Note 6-The purchaser may designate the similar layers between which the delamination test will be conducted.

Note 7—For additional details on conducting the delamination test, contact the seller.

8.6 Inspection and Acceptance—The installation may be inspected visually if appropriate, or by closed-circuit television if visual inspection cannot be accomplished. Variations from true line and grade may be inherent because of the conditions of the original piping. No infiltration of groundwater should be observed. All service entrances should be accounted for and be unobstructed.

9. Keywords

9.1 cured-in-place pipe; installation—underground; plastic pipe—thermoset; rehabilitation; thermosetting resin pipe

APPENDIX

(Nonmandatory Information)

X1. DESIGN CONSIDERATIONS

X1.1 General Guidelines—The design thickness of the CIPP is a function of the resin, materials of construction of the fabric tube, and the condition of the existing pipe. In addition, depending on the condition of the pipe, the design thickness of

the CIPP may also be a function of groundwater, soil type, and influence of live loading surrounding the host pipe. For guidance relating to terminology of piping conditions and related design equations, see Appendix X1 of Practice F 1216.

ASTM International takes no position respecting the validity of any patent rights asserted in connection with any item mentioned in this standard. Users of this standard are expressly advised that determination of the validity of any such patent rights, and the risk of infringement of such rights, are entirely their own responsibility.

This standard is subject to revision at any time by the responsible technical committee and must be reviewed every five years and if not revised, either reapproved or withdrawn. Your comments are invited either for revision of this standard or for additional standards and should be addressed to ASTM International Headquarters. Your comments will receive careful consideration at a meeting of the responsible technical committee, which you may attend. If you feel that your comments have not received a fair hearing you should make your views known to the ASTM Committee on Standards, at the address shown below.

This standard is copyrighted by ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959, United States. Individual reprints (single or multiple copies) of this standard may be obtained by contacting ASTM at the above address or at 610-832-9585 (phone), 610-832-9555 (fax), or service@astm.org (e-mail); or through the ASTM website (www.astm.org).

Copyright by ASTM Int'l (all rights reserved);

7

Reproduction authorized per License Agreement with ALLAN CLARK (NU FLOW TECHNOLOGIES (2000) IN); Fri Feb 4 10:22:01 EST 2005

Amendment to ASTM F1743-96 Author: Doug Kleweno of DGK Technologies

Douglas Kleweno 25124 235th Way SE Maple Valley, WA 93038-5905

May 22, 2001

Whom it may concern:

I am writing this letter at the request of Mr. David Ratliff (Nu Flow Installer, Abilene, Texas) in order to provide clarification for ASTM F1743 "Standard Practice for Rehabilitation of Existing Pipelines and Conduits by Pulled-in-Place Installation of Cured-In-Place Thermosetting Resin Pipe (CIPP)" and similar pulled-in-place products. In my previous position I was the Technical Manager for InLiner USA CIPP products and am the author of ASTM F1743. I have also been involved in editing ASTM F1216 and ASTM D5813, which are also CIPP installation and material specifications, respectively.

When writing an ASTM specification it is necessary to provide enough minimum requirements so that the product can meet or exceed engineering and design criteria. However, ASTM specifications also must be generalized enough to accommodate the majority of products and processes that may want to reference it. F1743 was generally written for most CIPP applications where heated cures predominate in the market. There are many resin applications for CIPP and other products (boat building, automotive, heavy truck) where ambient cure resin formulations are common and used successfully. Technically speaking, an ambient cure formulation for CIPP does initiate at a temperature less that 180F, which is recommended in Section 5.2.3 or F1743.

More critical to CIPP and other applications is whether the product (CIPP in this case) meets the minimum initial structural property recommendations. The minimum properties for the CIPP were provided in Section 4.2.3 of ASTM F1743 and this is probably the most important aspect for the product to meet the requirements for external hydrostatic or soil loading that may surround the pipe. These minimum properties are the numbers by which the minimum design thickness is determined for the installed CIPP or part liner.

As a side note it is my experience that the curing strategy is chosen for handling and transportation purposes. Large liners for CIPP require long catalyzed stability so the product can be processed, transported, and installed. For short runs or tubes processed at a job site, it was common to use ambient or semi-ambient cure formulations to reduce the time at the job site and the associated inconvenience to the surrounding community.

I hope this has provided some additional clarification.

Doug Kleweno (423) 413-8529

August 24, 2005

Page: 1

	²7 9 0	
c	U FLOW TECHNOLOGIES 2000 INC. 010 THORNTON ROAD SOUTH SHAWA ON L1J 7E2 ANADA	
Customer: 1F NU 10 OS C/	ttn: MR. BOB FOWLE 2790 J FLOW TECHNOLOGIES 2000 INC. 110 THORNTON ROAD SOUTH SHAWA ON L1J 7E2 ANADA tn: MR. BOB FOWLE	Plant: 1P790 NU FLOW TECHNOLOGIES 2000 INC. 1010 THORNTON ROAD SOUTH OSHAWA ON L1J 7E2 CANADA Attn: MR. BOB FOWLE
Test Type: Thank you fo	cription: Nu Flow #2000 Pipe Lining - Liner AA - Annual Collection or having your product tested by NSF.	
		erformed on your product. Your program representative will emaining issues concerning the status of this product. mmediate questions pertaining to your product.
Reviewer:	Ala C. C Atabek Ciechanowski - Manager, Engineering Lab	Status: Pass
CC: Program: Program Region: PA Proje	010 - Plumbing and Related Programs Rep: AMY CHOKSEY 01 - Domestic	borauxy
Certification o	all not be reproduced, except in its entirety, without t r authorization to use the NSF Mark. Authorization to isting, (www.nsf.org). The results relate only to thos	-00012414 the written approval of NSF. This report does not represent NSF to use the NSF Mark is limited to products appearing in the Company's use items tested. Ann Arbor, Michigan 48105-9723 USA

General Information

Standard: 014 - PLASTICS PIPING SYSTEM COMPONENTS AND RELATED MATERIALS

	DCC Number / Tracking ID PL04249		
	Family Code A		
	Material Type Epoxy		
	Monitor Code A		
	Performance Standard F1216		
	Performance Standard Year 2003		
	Product Identifier Part A Batch # 0309	904, Part B Batch # 040405_3	
	Sample Description Liner		
	Trade Designation Nu Flow #2000 Pig	be Lining	
Sample Id:	S-0000161582		
Description:	Nu Flow #2000 Pipe Lining - Liner		
Sampled Date:	05/19/2005		
Received Date:	05/23/2005		
Testing Parame	er and and and and and and and and and and 	Result	A A Units *
Engineering Lab			
	Leakage Test		
Initial wate	er column:	10	feet
Final wate	er column:	10	feet
Time:		60	minutes
Leakage r	ate:	0	g/in/day
Required	maximum leakage rate:	50	g/in/day
Actual lea	kage rate:	0	g/in/day
	pe Leakage Test:	Pass	
Flex Modulu:	5		
	s conditioned for	40	hours
	s conditioned at	73	degrees F
Relative h	<u> </u>	50	%
	erature Required	73	degrees F
	erature Actual	73	degrees F
· · · ·	crosshead speed	0.22	
Deflection	sshead speed	0.22	in/min
		<5	<u>%</u>
Specimen Specimen		280000	psi
Specimen		315000	psipsi
Specimen		275000	psi
Specimen		242000	psi
	Average Modulus (minimum)	250000 psi	Po;
•	erage Modulus	274000	psi
Flex Modu		PASS	
Flexural Stre		· · · · · · · · · · · · · · · · · · ·	
Specimen	s conditioned for	40	hours
Specimen	s conditioned at	73	degrees F
Relative H	lumidity	50	percent
Test Tem	perature	73	degrees F
Cross Hea	ad Speed	0.22	in/min.
	1 Flexural Strength	6280	psi
Specimen	2 Flexural Strength	6480	psi
Specimen	3 Flexural Strength	6010	psi
	4 Flexural Strength	5210	psi

FI20050824120213

J-00012414

Page 2 of 4

This report shall not be reproduced, except in its entirety, without the written approval of NSF. This report does not represent NSF Certification or authorization to use the NSF Mark. Authorization to use the NSF Mark is limited to products appearing in the Company's Official NSF Listing, (www.nsf.org). The results relate only to those items tested.

Original reports bear a light blue NSF Mark and border.

÷

resting Parameter	Result	Units"	-
ngineering Lab (Cont'd)		<u>.</u> .	
Specimen 5 Flexural Strength	5820	psi	
Average Flexural Strength	5960	psi	
Required Flexural Strength	4500	psi	-
Flexural Strength Test	Pass		
Strength, Tensile			
Specimens conditioned for	40	hours	
Specimens conditioned at	73	degrees F	
Relative humidity	50	%	
Test Temperature	73	degrees F	
Actual Crosshead Speed	0.2	in/min,	
Required Crosshead Speed	0.2	in/min.	
Specimen 1: Tensile Strength	3930	psi	
Specimen 2: Tensile Strength	4540	psi	
Specimen 3: Tensile Strength	4010	psi	
Specimen 4: Tensile Strength	3690	psi	
Specimen 5: Tensile Strength	3920	psi	
Req'd Average Tensile Strength (minimum)	3000		
Actual Average Tensile Strength	4020	psi	
Tensile Strength Test	PASS		
Specimen Fabrication	· · · · · · · · · · · · · · · · · · ·		
Specimen Fabrication	COMPLETE		
Time	1	hours	
Technician	3356		

J-00012414

Page 3 of 4

This report shall not be reproduced, except in its entirety, without the written approval of NSF. This report does not represent NSF Certification or authorization to use the NSF Mark. Authorization to use the NSF Mark is limited to products appearing in the Company's Official NSF Listing, (www.nsf.org). The results relate only to those items tested.

Page: 3

	ld	Address
All work performed at:	→ NSF_AA	NSF International
		789 Dixboro Road
		Ann Arbor MI 48105-0140
		USA

References to Testing Procedures;

P4255 Text Modification

NSF Reference	Parameter / Test Description		
P3084	Gravity Pipe Leakage Test		
P3122	Flex Modulus		
P3123	Flexural Strength Test		
P3127	Strength, Tensile		
P3172	Specimen Fabrication		

FI20050824120213 Final_Std

This report shall not be reproduced, except in its entirety, without the written approval of NSF. This report does not represent NSF Certification or authorization to use the NSF Mark. Authorization to use the NSF Mark is limited to products appearing in the Company's Official NSF Listing, (www.nsf.org). The results relate only to those items tested.

Original reports hear a light blue NSF Mark and border.

Page 4 of 4

Page: 4

P4255 Text Modification

NU FLOW TECHNOLOGIES 2000 INC. 1010 Thornton Road South Oshawa, Ontario L1J 7E2

Laboratory Report

Attention	Client's Order Numbe	er Date		Report Numbe	
Sinan Omari	9282	16 March 2007		07-84	
Client's Material / Product Des	cription Da	Date Sample Received		aterial / Product Specification	
(1) Sample		06 March 2007		ASTM D5813-04	
Test Performed			Result		
1. <u>Tangent Flexural Modulus</u>					
 (ASTM D790) Crosshead speed: 0.0 1000 lbf Load cell 2 inch support span L/D = 16 Specimen Geometry: 1/8" x 1/2" x 4" 5 specimens tested Units: psi 		ample # 1 2 3 4 <u>5</u> Average	384400 420900 304600 425400 <u>397100</u> 386500	250,000 psi Minimum	
 2. <u>Flexural Strength</u> (ASTM D790) 5 specimens tested Units: psi 3. <u>Wall Thickness</u>		ample # 1 2 3 4 <u>5</u> Average <u>Side A</u> 3.56	6 070 6 670 5 400 6 200 <u>6 440</u> 6 160 <u>Side B</u> 3.26	4,500 psi Minimum	
 Units: mm Four measurements ta each side 	ken on	3.56 3.62 3.67 3.79	3.26 3.45 3.50 3.74		

Telephone (905) 673-9899

Address 2421 Drew Road Mississauga, Ontario Canada L55 1A1

Facsimile (905) 673-8394

E-mail aahlawat@acuren.com

Web www.acuren.com

(0

whole or in part, of the test or substance of this information shall reare only to the name of Acuren shall not be used in any manner in connection with the take, offenin or damage resulting directly or and product error, negligence or ensist report date. (v) Work which may progress beyond thirty-one (31) days in durati (v) Any test soutonuced ha an approved subcontractor are highlighted above (1) (v) Any test soutonuced has an approved subcontractor are highlighted above (1) and the source of the antiproved subcontractor are highlighted above (1) and the source of the antiproved subcontractor are highlighted above (1) and the source of the antiproved subcontractor are highlighted above (1) and the source of the antiproved subcontractor are highlighted above (1) and the source of the antiproved subcontractor are highlighted above (1) and the source of the antiproved subcontractor are highlighted above (1) and the source of the antiproved subcontractor are highlighted above (1) and the source of the antiproved subcontractor are highlighted above (1) and the source of the antiproved subcontractor are highlighted above (1) and the source of the antiproved subcontractor are highlighted above (1) and the source of the antiproved subcontractor are highlighted above (1) and the source of the antiproved subcontractor are highlighted above (1) and the source of the antiproved subcontractor are highlighted above (1) and the source of the antiproved subcontractor are highlighted above (1) and the source of the antiproved subcontractor are highlighted above (1) and the source of the antiproved subcontractor are highlighted above (1) and the source of the antiproved subcontractor are highlighted above (1) and the source of the antiproved subcontractor are highlighted above (1) and the source of the source of

Corrine Dimnik, B.Sc. Certified Inspector.

() The in whole or in part, of th name of Acuren shall r or damage

Dr. Erhan Ulvan, Ph. D, P. Eng.,

(m)

Laboratory Manager.

Page:

(iv)

with the sale, offering or

e (")

Flow Comparisons

Comparison between a new pipe and a rehabilitated pipe

Diam	leter	Hazen Williams	Flow for new pipe	Thickness of Liner (mm)	Resulting internal	Hazen Williams	Flow for rehabilitated	% Loss
(m)	(in)	Coefficient (C)	(m ³ /s)		diameter (m)	coefficient (C)	pipe (m ³ /s)	
0.15	6	140	0.27	2	0.146	140	0.25	-6.86
0.20	8	140	0.57	2	0.196	140	0.54	-5.17
0.30	10	140	1.02	2	0.246	140	0.98	-4.15
0.40	12	140	1.65	2.5	0.295	140	1.57	-4.32

Comparison between old pipe and a rehabilitated pipe

Old F	· 1		Flow for	Thickness of	Old Pipe	Hazen Williams	Flow for	%
Diam	eter	Coefficient (C)	old pipe	Liner (mm)	diameter (m)	coefficient (C)		Increase
	0.5		(m³/s)				(m ³ /s)	
(m)	(IN)							
0.13	6	60	0.08	2	0.146	140	0.25	216.63
0.18	8	60	0.18	2	0.196	140	0.54	191.91
0.23	10	60	0.35	2	0.246	140	0.98	178.48
0.27	12	60	0.53	2.5	0.295	140	1.57	194.52

Page:

Related Modifications

702.1, 702.2, 1102.1, 1102.2, 1102.3, 1102.4

Summary of Modification

Modify the current building materials list to include Cure-In Place (CIPP) Thermosetting Resin Conduit Liner that meets ASTM F-1743, ASTM F-1216, ASTM D790, ASTM D638 and ASTM D543. in sections 702.1,702.2, 702.3, 1102.1, 1102.2, 1102.3 and 1102.4 for building drains and building sewer pipes.

Rationale

CIPP liners are an alternative to traditional pipe replacement that increases the flow charicteristics of the pipe.

Fiscal Impact Statement

Impact to local entity relative to enforcement of code

There are no additional costs relative to enforcement compared to tradional pipe replacement.

Impact to building and property owners relative to cost of compliance with code

There is a significant cost savings to building and property owners as well as reducing potentially hazardous materials left undisturbed as compared to traditional pipe replacement.

Impact to industry relative to the cost of compliance with code

There is no impact to the industry relative to the cost of compliance with code.

Requirements

Has a reasonable and substantial connection with the health, safety, and welfare of the general public

CIPP lining eliminates the destruction of landscapes and property as well as the health dangers associated with removing of sewer pipes in need of repair.

Strengthens or improves the code, and provides equivalent or better products, methods, or systems of construction

CIPP liners provide a repair solution that allows drain, waste and sewer pipes to be repaired without the digging and destruction required for traditional pipe repairs or replacement. CIPP liners are seamless and jointless, reducing the number of potential failures. More resistant to corrosion.

Does not discriminate against materials, products, methods, or systems of construction of demonstrated capabilities

CIPP lining can be installed in any type of host pipe used for Building drains and Building sewer pipes for residential, commercial and industrial applications.

Does not degrade the effectiveness of the code

CIPP lining does not degrade the effectiveness of the code.

SECTION 702 MATERIALS

702.1 Above-ground sanitary drainage and vent pipe. Above-ground soil, waste and vent pipe shall conform to one of the standards listed in Table 702.1.

TABLE 702.1 ABOVE-GROUND DRAINAGE AND VENT PIPE

MATERIAL	STANDARD
Acrylonitrile butadiene styrene	
(ABS) plastic pipe in IPS	
diameters, including Schedule	ASTM D 2661; ASTM F 628;
40, DR 22 (PS 200) and DR	ASTM F 1488; CSA B181.1
24 (PS 140); with a solid,	
cellular core or composite	
wall	
Brass pipe	ASTM B 43
Cast-iron pipe	ASTM A 74; ASTM A 888;
	CISPI 301
Copper or copper-alloy pipe	ASTM B 42; ASTM B 302
Copper or copper-alloy tubing	ASTM B 75; ASTM B 88;
(Type K, L, M or DWV)	ASTM B 251; ASTM B 306
Galvanized steel pipe	ASTM A 53
Glass pipe	ASTM C 1053
Polyolefin pipe	ASTM F 1412;
	CAN/CSA B181.3
Polyvinyl chloride (PVC)	
plastic pipe in IPS diameters,	
	ASTM D 2665; ASTM F 891;
(PS 200), and DR 24 (PS	ASTM F 1488; CSA B181.2
140); with a solid, cellular	
core or composite wall	
Polyvinyl chloride (PVC)	
plastic pipe with a 3.25-inch	ASTM D 2949, ASTM F 1488
O.D. and a solid, cellular	
core or composite wall	
Polyvinylidene fluoride	ASTM F 1673; CAN/CSA B181.3
(PVDF) plastic pipe	
Stainless steel drainage systems, Types 304 and 316L	ASME A112.
Cured-In Place Thermosetting	ASTM F 1743, ASTM F 1216, ASTM D
Resin Conduit Liner (CIPP)	<u>790, ASTM D 638, ASTM D 543</u>

Page: `

Designation: F 1743 - 96 (Reapproved 2003)

An American National Standard

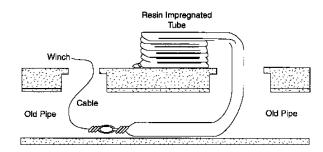
Standard Practice for Rehabilitation of Existing Pipelines and Conduits by Pulledin-Place Installation of Cured-in-Place Thermosetting Resin Pipe (CIPP)¹

This standard is issued under the fixed designation F 1743; the number immediately following the designation indicates the year of original adoption or, in the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. A superscript epsilon (ϵ) indicates an editorial change since the last revision or reapproval.

1. Scope

1.1 This practice describes the procedures for the reconstruction of pipelines and conduits (4 to 96 in. (10 to 244 cm) diameter) by the pulled-in-place installation of a resinimpregnated, flexible fabric tube into an existing conduit and secondarily inflated through the inversion of a calibration hose by the use of a hydrostatic head or air pressure (see Fig. 1). The resin is cured by circulating hot water or by the introduction of controlled steam into the tube. When cured, the finished cured-in-place pipe will be continuous and tight fitting. This reconstruction process may be used in a variety of gravity and pressure applications such as sanitary sewers, storm sewers, process piping, electrical conduits, and ventilation systems.

1.2 The values stated in inch-pound units are to be regarded as the standard. The values given in parentheses are for informational purposes only.


Note 1—There are no ISO standards covering the primary subject matter of this practice.

1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

2. Referenced Documents

2.1 ASTM Standards:

- D 543 Test Method of Resistance of Plastics to Chemical $\ensuremath{\mathsf{Reagents}}^2$
- D 638 Test Method for Tensile Properties of Plastics²
- D 790 Test Methods for Flexural Properties of Unreinforced and Reinforced Plastics and Electrical Insulating Materials²
- D 903 Test Method for Peel or Stripping Strength of Adhesive Bonds^3

Step 1 - Pull resin-impregnated tube into existing pipe.

Step 2 - Calibration hose inversion

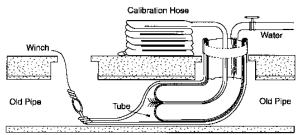


FIG. 1 Cured-in-Place Pipe Installation Methods

- D 1600 Terminology for Abbreviated Terms Relating to $\ensuremath{\text{Plastics}}^2$
- D 1682 Test Method for Breaking Load and Elongation of Textile ${\rm Fabrics}^4$
- D 3039/D3039M Test Method for Tensile Properties of Polymer Matrix Composite Materials⁵

⁴ Discontinued: See 1991 Annual Book of ASTM Standards, Vol 07.01. ⁵ Annual Book of ASTM Standards, Vol 15.03.

Copyright © ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959, United States.

1

Copyright by ASTM Int'l (all rights reserved); Reproduction authorized per License Agreement with ALLAN CLARK (NU FLOW TECHNOLOGIES (2000) IN); Fri Feb 4 10:22:01 EST 2005

2010 Triennial

¹ This practice is under the jurisdiction of ASTM Committee F-17 on Plastic Piping Systems and is the direct responsibility of Subcommittee F17.67 on Trenchless Plastic Pipeline Technology.

Current edition approved Feb. 10, 2003. Published April 2003. Last previous edition approved in 1996 as F1743-96.

² Annual Book of ASTM Standards, Vol 08.01.

³ Annual Book of ASTM Standards, Vol 15.06.

- D 3567 Practice for Determining Dimensions of Reinforced Thermosetting Resin Pipe (RTRP) and Fittings⁶
- D 4814 Specification for Automotive Spark—Ignition Engine Fuel^7
- D 5813 Specification for Cured-in-Place Thermosetting Resin Sewer Pipe^6
- F 412 Terminology Relating to Plastic Piping Systems⁶
- F 1216 Practice for Rehabilitation of Existing Pipelines and Conduits by the Inversion and Curing of a Resin-Impregnated Tube⁶
- 2.2 AWWA Standard:
- M28 Manual on Cleaning and Lining Water Mains⁸
- 2.3 NASSCO Standard:
- Recommended Specifications for Sewer Collection System Rehabilitation⁹

Note 2—An ASTM specification for cured-in-place pipe materials appropriate for use in this practice is under preparation and will be referenced in this practice when published.

3. Terminology

3.1 *General*—Definitions are in accordance with Terminology F 412. Abbreviations are in accordance with Terminology D 1600, unless otherwise indicated.

3.2 Definitions of Terms Specific to This Standard:

3.2.1 *calibration hose*—an impermeable bladder which is inverted within the resin-impregnated fabric tube by hydrostatic head or air pressure and may optionally be removed or remain in place as a permanent part of the installed cured-in-place pipe as described in 5.2.2.

3.2.2 cured-in-place pipe (CIPP)—a hollow cylinder consisting of a fabric tube with cured (cross-linked) thermosetting resin. Interior or exterior plastic coatings, or both, may be included. The CIPP is formed within an existing pipe and takes the shape of and fits tightly to the pipe.

3.2.3 delamination-separation of layers of the CIPP.

3.2.4 *dry spot*—an area of fabric of the finished CIPP which is deficient or devoid of resin.

3.2.5 *fabric tube*—flexible needled felt, or equivalent, woven or nonwoven material(s), or both, formed into a tubular shape which during the installation process is saturated with resin and holds the resin in place during the installation and curing process.

3.2.6 *inversion*—the process of turning the calibration hose inside out by the use of water pressure or air pressure.

3.2.7 *lift*—a portion of the CIPP that is a departure from the existing conduit wall forming a section of reverse curvature in the CIPP.

4. Significance and Use

4.1 This practice is for use by designers and specifiers, regulatory agencies, owners, and inspection organizations who are involved in the rehabilitation of conduits through the use of

a resin-impregnated fabric tube pulled-in-place through an existing conduit and secondarily inflated through the inversion of a calibration hose. Modifications may be required for specific job conditions.

5. Recommended Materials and Manufacture

5.1 *General*—The resins, fabric tube, tube coatings, or other materials, such as the permanent calibration hose when combined as a composite structure, shall produce CIPP that meets the requirements of this specification.

5.2 *CIPP Wall Composition*—The wall shall consist of a plastic coated fabric tube filled with a thermosetting (cross-linked) resin, and if used, a filler.

5.2.1 Fabric Tube-The fabric tube should consist of one or more layers of flexible needled felt, or equivalent, woven or nonwoven material(s), or both, capable of carrying resin, withstanding installation pressures, and curing temperatures. The material(s) of construction should be able to stretch to fit irregular pipe sections and negotiate bends. Longitudinal and circumferential joints between multiple layers of fabric should be staggered so as not to overlap. The outside layer of the fabric tube should have an impermeable flexible coating(s) whose function is to contain the resin during and after fabric tube impregnation. The outer coating(s) must facilitate monitoring of resin saturation of the material(s) of construction of the fabric tube. The fabric tube should be fabricated to a size that, when installed, will tightly fit the internal circumference and the length of the original conduit. Allowance should be made for circumferential and longitudinal stretching of the fabric tube during installation. As required, the fabric tube should meet minimum tensile strength requirements in the longitudinal and transverse directions as specified in 7.1. All the material(s) of construction for the fabric tube should be compatible with the resin system used.

5.2.2 Calibration Hose:

5.2.2.1 *Removable Calibration Hose*—The removable calibration hose should consist of an impermeable plastic, or impermeable plastic coating(s) on flexible woven or nonwoven material(s), or both, that do not absorb resin and are capable of being removed from the CIPP.

5.2.2.2 Permanent Calibration Hose-The permanent calibration hose should consist of an impermeable plastic coating on a flexible needled felt or equivalent woven or nonwoven material(s), or both, that are capable of absorbing resin and are of a thickness to become fully saturated with resin. The calibration hose should be translucent to facilitate postinstallation inspection. The calibration hose should be fabricated to a size that, when installed, will tightly fit the internal circumference and the length of the resin saturated fabric tube. Once inverted, the calibration hose becomes part of the fabric tube, and once properly cured, should bond permanently with the fabric tube. The properties of the calibration hose should meet minimum tensile strength requirements in the longitudinal and transverse directions as specified in 7.1. All the material(s) of construction for the calibration hose should be compatible with the resin system used.

5.2.3 *Resin*—A chemically resistant isophthalic based polyester, or vinyl ester thermoset resin and catalyst system or an

Copyright by ASTM Int'l (all rights reserved);

2

Reproduction authorized per License Agreement with ALLAN CLARK (NU FLOW TECHNOLOGIES (2000) IN); Fri Feb 4 10:22:01 EST 2005

⁶ Annual Book of ASTM Standards, Vol 08.04.

⁷ Annual Book of ASTM Standards, Vol 05.03.

⁸ Available from the American Water Works Association, 6666 W. Quincey Ave., Denver, CO 80235.

⁹ Available from the National Association of Sewer Service Companies, 101 Wymore Rd., Suite 501, Altamonte, FL 32714.

epoxy resin and hardener that is compatible with the installation process should be used. The resin should be able to cure in the presence of water and the initiation temperature for cure should be less than 180°F (82.2°C). The cured resin/fabric tube system, with or without the calibration hose, shall be expected to have as a minimum the initial structural properties given in Table 1. These physical properties should be determined in accordance with Section 8. The cured resin/fabric tube system, with or without the calibration hose, should meet the minimum chemical resistance requirements as specified in 7.2.

6. Installation Recommendations

6.1 Cleaning and Pre-Inspection:

6.1.1 Prior to entering access areas, such as manholes, and performing inspection or cleaning operations, an evaluation of the atmosphere to determine the presence of toxic or flammable vapors or lack of oxygen must be undertaken in accordance with local, state, or federal safety regulations.

6.1.2 Cleaning of Pipeline—All internal debris should be removed from the original pipeline. Gravity pipes should be cleaned with hydraulically powered equipment, high-velocity jet cleaners, or mechanically powered equipment in accordance with NASSCO Recommended Specifications for Sewer Collection System Rehabilitation. Pressure pipelines should be cleaned with cable attached devices or fluid propelled devices in accordance with AWWA M28.

6.1.3 Inspection of Pipelines—Inspection of pipelines should be performed by experienced personnel trained in locating breaks, obstacles, and service connections by closedcircuit television or man entry. The interior of the pipeline should be carefully inspected to determine the location of any conditions that may prevent proper installation of the impregnated tube, such as protruding service taps, collapsed or crushed pipe, and reductions in the cross-sectional area of more than 40 %. These conditions should be noted so that they can be corrected.

6.1.4 *Line Obstructions*—The original pipeline should be clear of obstructions such as solids, dropped joints, protruding service connections, crushed or collapsed pipe, and reductions in the cross-sectional area of more than 40 % that may hinder or prevent the installation of the resin-impregnated fabric tube. If inspection reveals an obstruction that cannot be removed by conventional sewer-cleaning equipment, then a point-repair excavation should be made to uncover and remove or repair the obstruction.

6.2 *Resin Impregnation*—The fabric tube should be totally impregnated with resin (wet-out) and run through a set of rollers separated by a space, calibrated under controlled conditions to ensure proper distribution of resin. The volume of

TABLE 1	CIPP	Initial	Structural	Pro	perties ⁴

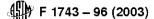
Property	Test Method –	Minimum Value	
Flopeity	Test Method -	psi	(MPa)
Flexural strength	D 790	4 500	(31)
Flexural modulus	D 790	250 000	(1724)
Tensile strength (for pressure pipes only)	D 638	3 000	(21)

^AThe values in Table 1 are for field inspection. The purchaser should consult the manufacturer for the long-term structural properties. resin used should be sufficient to fully saturate all the voids of the fabric tube material, as well as all resin-absorbing material of the calibration hose at nominal thickness and diameter. The volume should be adjusted by adding 3 to 15 % excess resin to allow for the change in resin volume due to polymerization, the change in resin volume due to thermal expansion or contraction, and resin migration through the perforations of the fabric tube and out onto the host pipe.

6.3 *Bypassing*—If bypassing of the flow is required around the sections of pipe designated for reconstruction, the bypass should be made by plugging the line at a point upstream of the pipe to be reconstructed and pumping the flow to a downstream point or adjacent system. The pump and bypass lines should be of adequate capacity and size to handle the flow. Services within this reach will be temporarily out of service.

6.3.1 Public advisory services shall notify all parties whose service laterals will be out of commission and advise against water usage until the main line is back in service.

6.4 Installation Methods:


6.4.1 Perforation of Resin-Impregnated Tube—Prior to pulling the resin-impregnated fabric tube in place, the outer impermeable plastic coating may optionally be perforated. When the resin-impregnated fabric tube is perforated, this should allow resin to be forced through the perforations and out against the existing conduit by the force of the hydrostatic head or air pressure against the inner wall of the calibration hose. The perforation should be done after fabric tube impregnation with a perforating roller device at the point of manufacture or at the jobsite. Perforations should be made on both sides of the lay-flat fabric tube covering the full circumference with a spacing no less than 1.5 in. (38.1 mm) apart. Perforating slits should be a minimum of 0.25 in. (6.4 mm) long.

6.4.2 Pulling Resin-Impregnated Tube into Position-The wet-out fabric tube should be pulled into place using a power winch. The saturated fabric tube should be pulled through an existing manhole or other approved access to fully extend to the next designated manhole or termination point. Care should be exercised not to damage the tube as a result of friction during pull-in, especially where curvilinear alignments, multilinear alignments, multiple offsets, protruding services, and other friction-producing host pipe conditions are present. Once the fabric tube is in place, it should be attached to a vertical standpipe so that the calibration hose can invert into the center of the resin-impregnated fabric tube. The vertical standpipe should be of sufficient height of water head to hold the fabric tube tight to the existing pipe wall, producing dimples at side connections. A device such as a dynamometer or load cell should be provided on the winch or cable to monitor the pulling force. Measure the overall elongation of the fabric tube after pull-in completion. The acceptable longitudinal elongation shall not be more than 5 % of the overall length measured after the calibration hose has been installed, or exceed the recommended pulling force.

6.4.3 Hydrostatic Head Calibration Hose Inversion—The calibration hose should be inserted into the vertical inversion standpipe, with the impermeable plastic membrane side out. At the lower end of the inversion standpipe, the calibration hose should be turned inside out and attached to the standpipe so

3

Copyright by ASTM Int'l (all rights reserved); Reproduction authorized per License Agreement with ALLAN CLARK (NU FLOW TECHNOLOGIES (2000) IN); Fri Feb 4 10:22:01 EST 2005

that a leakproof seal is created. The resin-impregnated fabric tube should also be attached to the standpipe so that the calibration hose can invert into the center of the resinimpregnated tube. The inversion head should be adjusted to be of sufficient height of water head to cause the calibration hose to invert from the initial point of inversion to the point of termination and hold the resin-impregnated fabric tube tight to the pipe wall, producing dimples at side connections. Care should be taken during the inversion so as not to overstress the felt fiber. At the request of the purchaser, the fabric tube manufacturer should provide information on the maximum allowable axial and longitudinal tensile stress for the fabric tube.

6.4.3.1 An alternative method of installation is top inversion. In this case, the calibration hose and resin-impregnated fabric tube are attached to a top ring. In this case, the tube itself forms the standpipe for generation of the hydrostatic head. Other methods of installation are also available and should be submitted for acceptance by the purchaser.

6.4.4 Using Air Pressure-The resin-impregnated fabric tube should be perforated as described in 6.4.1. Once perforated, the wet-out fabric tube should be pulled into place using a power winch as described in 6.4.2. The calibration hose should be inserted through the guide chute or tube of the pressure containment device in which the calibration hose has been loaded, with the impermeable plastic membrane side out. At the end of the guide chute, the calibration hose should be turned inside out and attached so that a leakproof seal is created. The resin-impregnated tube should also be attached to the guide chute so that the calibration hose can invert into the center of the resin-impregnated tube. The inversion air pressure should be adjusted to be of sufficient pressure to cause the calibration hose to invert from point of inversion to point of termination and hold the resin saturated fabric tube tight to the pipe wall, producing dimples at side connections. Care should be taken during the inversion so as not to overstress the woven and nonwoven materials. Take suitable precautions to eliminate hazards to personnel in the proximity of the construction when pressurized air is being used.

6.5 Lubricant During Installation—The use of a lubricant during installation is recommended to reduce friction during inversion. This lubricant should be poured into the fluid in the standpipe in order to coat the calibration hose during inversion. When air is used to invert the calibration hose, the lubricant should be applied directly to the calibration hose. The lubricant used should be a nontoxic, oil-based product that has no detrimental effects on the tube or boiler and pump system, and will not adversely affect the fluid to be transported.

6.6 Curing:

6.6.1 Using Circulating Heated Water—After installation is completed, suitable heat source and water recirculation equipment are required to circulate heated water throughout the section to uniformly raise the water temperature above the temperature required to effect a cure of the resin. The water temperature in the line during the cure period should be as recommended by the resin manufacturer or seller.

6.6.1.1 The heat source should be fitted with suitable monitors to measure the temperature of the incoming and

outgoing water supply. Temperature sensors should also be placed between the resin-impregnated tube and the host pipe invert at both termination points to monitor the temperatures during cure.

6.6.1.2 Initial cure will occur during temperature heat-up and is completed when exposed portions of the CIPP appear to be hard and sound and the remote temperature sensor indicates that the temperature is of a magnitude to realize an exotherm or cure in the resin. After initial cure is reached, the temperature should be raised to the post-cure temperature and held there for a period recommended by the resin manufacturer or seller. During post-cure, the recirculation of the water and cycling of the boiler to maintain the temperature continues. The curing of the CIPP must take into account the existing pipe material, the resin system, and ground conditions (temperature, moisture level, and thermal conductivity of soil).

6.6.2 Using Steam—After installation is completed, suitable steam-generating equipment is required to distribute steam throughout the pipe. The equipment should be capable of delivering steam throughout the section to uniformly raise the temperature within the pipe above the temperature required to effect a cure of the resin. The temperature in the line during the cure period should be as recommended by the resin manufacturer or seller.

6.6.2.1 The steam-generating equipment should be fitted with a suitable monitor to measure the temperature of the outgoing steam. Temperature sensors should also be placed between the resin-impregnated tube and the host pipe invert at both termination points to monitor the temperatures during cure.

6.6.2.2 Initial cure will occur during temperature heat-up and is completed when exposed portions of the new pipe appear to be hard and sound and the remote temperature sensor indicates that the temperature is of a magnitude to realize an exotherm or cure in the resin. After initial cure is reached, the temperature should be raised to the post-cure temperature and held there for a period recommended by the resin manufacturer or seller, during which time the distribution and control of steam to maintain the temperature continues. The curing of the CIPP must take into account the existing pipe material, the resin system, and ground conditions (temperature, moisture level, and thermal conductivity of soil).

6.6.3 *Required Pressures*—As required by the purchase agreement, the estimated maximum and minimum pressure required to hold the flexible tube tight against the existing conduit during the curing process should be provided by the seller and shall be increased to include consideration of external ground water, if present. Once the cure has started and dimpling for laterals is completed, the required pressures should be maintained until the cure has been completed. For water or steam, the pressure should be maintained within the estimated maximum and minimum pressure during the curing process. If the steam pressure or hydrostatic head drops below the recommended minimum during the cure, the CIPP should be inspected for lifts or delaminations and evaluated for its ability to fully meet the applicable requirements of 6.8 and Section 8.

6.7 Cool-Down:

Copyright by ASTM Int'l (all rights reserved);

Reproduction authorized per License Agreement with ALLAN CLARK (NU FLOW TECHNOLOGIES (2000) IN); Fri Feb 4 10:22:01 EST 2005

P4315 Text Modification

6.7.1 Using Cool Water after Heated Water Cure—The new CIPP should be cooled to a temperature below 100°F (38°C) before relieving the static head in the inversion standpipe. Cool-down may be accomplished by the introduction of cool water into the inversion standpipe to replace water being drained from a small hole made in the downstream end. Take care to cool down the CIPP in a controlled manner, as recommended by the resin manufacturer or the seller. Care should be taken to release the static head so that a vacuum will not be developed that could damage the newly installed CIPP.

6.7.2 Using Cool Water after Steam Cure—The new CIPP should be cooled to a temperature below 100°F (38°C) before relieving the internal pressure within the section. Cool-down may be accomplished by the introduction of cool water into the section to replace the mixture of air and steam being drained from a small hole made in the downstream end. Take care to cool the CIPP in a controlled manner as recommended by the resin manufacturer or the seller. Care should be taken to release the air pressure so that a vacuum will not be developed that could damage the newly installed CIPP.

6.8 Workmanship—The finished CIPP should be continuous over the entire length of an installation and be free of dry spots, lifts, and delaminations. If these conditions are present, the CIPP will be evaluated for its ability to meet the applicable requirements of Section 8. Where the CIPP does not meet the requirements of Section 8 or specifically stated requirements of the purchase agreement, or both, the affected portions of CIPP will be removed and replaced with an equivalent repair.

6.8.1 If the CIPP does not fit tightly against the original pipe at its termination point(s), the full circumference of the CIPP exiting the existing host pipe or conduit should be sealed by filling with a resin mixture compatible with the CIPP.

6.9 Service Connections—After the new CIPP has been installed, the existing active (or inactive) service connections should be reinstated. This should generally be done without excavation, and in the case of non-man entry pipes, from the interior of the pipeline by means of a television camera and a remote-control cutting device. Service connections shall be reinstated to at least 90 % of the original area as it enters the host pipe or conduit.

Note 3—In many cases, a seal is provided where the formed CIPP dimples at service connections. However, this practice should not be construed to provide a 100 % watertight seal at all service connections. If total elimination of infiltration and inflow is desired, other means, which are beyond the scope of this practice, may be necessary to seal service connections and to rehabilitate service lines and manholes.

7. Material Requirements

7.1 Fabric Tube Strength—If required by the purchaser in the purchase agreement, the fabric tube, and seam (if applicable) as a quality control test, when tested in accordance with Test Method D 1682 shall have a minimum tensile strength of 750 psi (5 MPa) in both the longitudinal and transverse directions.

7.2 Chemical Resistance:

7.2.1 Chemical Resistance Requirements—The cured resin/ fabric tube matrix, with or without the calibration hose, shall be evaluated in a laminate form for qualification testing of long-term chemical exposure to a variety of chemical effluents and should be evaluated in a manner consistent with 6.4.1 of Specification D 5813. The specimens shall be capable of exposure to the solutions in Table 2 at a temperature of $73.4 \pm 3.6^{\circ}$ F (23 \pm 2°C), with a percentage retention of flexural modulus of elasticity of at least 80% after one year exposure. Flexural properties, after exposure to the chemical solution(s), shall be based on dimensions of the specimens after exposure.

7.2.2 Chemical Resistance Procedures—The CIPP laminates should be constructed of identical fabric and resin components that will be used for anticipated in-field installations. The cured resin/fabric tube laminates, with or without the calibration hose should be exposed to the chemical agents in a manner consistent with Test Method D 543. The edges of the test coupons should be left exposed and not treated with resin, unless otherwise specified by the purchaser. The specimen thicknesses should be in the range of 0.125 to 0.25 in. (3.2 to 6.4 mm), with the sample dimensions suitable for preparing a minimum of five specimens for flexural testing as described in 8.1.4. Flexural properties after exposure to the chemical solutions should be based on the dimensions of the specimen after exposure.

7.2.2.1 For applications other than standard domestic sewerage, it is recommended that chemical resistance tests be conducted with actual samples of the fluid flowing in the pipe. These tests can also be accomplished by depositing CIPP test samples in the active pipe.

7.2.2.2 As required by the purchaser, additional chemical resistance requirements for the CIPP may be evaluated as described in 6.4 of Specification D 5813.

8. Recommended Inspection Practices

8.1 For each installation length designated by the purchaser in the purchase agreement, the preparation of CIPP samples is required from one or both of the following two methods:

8.1.1 The samples should be cut from a section of cured CIPP at an intermediate manhole or at the termination point that has been installed through a like diameter section of pipe or other tubular restraining means which has been held in place by a suitable heat sink, such as sandbags.

8.1.2 The sample should be fabricated from material taken from the fabric tube and the resin/catalyst system used, and cured in a clamped mold, placed in the downtube when heated circulated water is used, and in the silencer when steam is used. When the CIPP is constructed of oriented continuous or discontinuous fibers to enhance the physical properties of the CIPP, this method of sample preparation is recommended in order to allow testing in the axial (that is, along the length) and

TABLE 2	Minimum Chemical Resistance Requirements for	
	Domestic Sanitary Sewer Applications	

/	11
Chemical Solution	Concentration, %
Nitric acid	1
Sulfuric acid	5
ASTM Fuel C ^A	100
Vegetable oil ^ø	100
Detergent ^C	0.1
Soap ^č	0.1

^AIn accordance with Specification D 4814 ^BCottonseed, com, or mineral oil.

^CIn accordance with Test Method D 543.

Copyright by ASTM Int'l (all rights reserved);

Reproduction authorized per License Agreement with ALLAN CLARK (NU FLOW TECHNOLOGIES (2000) IN); Fri Feb 4 10:22:01 EST 2005

circumferential (that is, hoop) directions of the CIPP. This method is also recommended when large-diameter CIPP is installed that may otherwise not be prepared with a tubular restraint.

8.1.3 The CIPP samples for each of these cases should be large enough to provide a minimum of three specimens and a recommended five specimens for flexural testing and also for tensile testing for internal pressure applications. The flexural and tensile specimens should be prepared in a manner consistent with 8.3.1 of Specification D 5813. For flexural and tensile properties, the full wall thickness of the CIPP samples shall be tested. Any plastic coatings or other CIPP layers not included in the structural design of the CIPP may be carefully ground off of the specimens prior to testing. If the sample is irregular or distorted such that proper testing is inhibited, attempts shall be made to machine any wall thickness from the inside pipe face of the sample. Any machining of the outside pipe face of the sample shall be done carefully so as to minimize the removal of material from the outer structural wall of the sample. Individual specimens should be clearly marked for easy identification and retained until final disposition or CIPP acceptance, or both, has been given.

8.1.4 Short-Term Flexural (Bending) Properties-The initial tangent flexural modulus of elasticity and flexural stress should be measured for gravity and pressure pipe applications in accordance with Test Method D 790, Test Method I, Procedure A and should meet the requirements of Table 1 within the 16:1 length to depth constraints. For specimens greater than 0.5 in. (12.7 mm) in depth, the width-to-depth ratio of the specimen should be increased to a minimum of 1:1 and should not exceed 4:1. For samples prepared in accordance with 8.1.1, determine flexural properties in the axial direction where the length of the test specimen is cut along the longitudinal axis of the pipe. Special consideration should be given to the preparation of flexural specimens to ensure opposite sides are parallel and adjacent edges are perpendicular. Flexural specimens should be tested such that the inside pipe face is tested in tension and the outside pipe face is in compression.

8.1.4.1 Fiber-Reinforced CIPP Flexural Properties— Where the CIPP is reinforced with oriented continuous or discontinuous fibers to enhance the physical properties of the CIPP, specimens should be sampled in accordance with 8.1.2, and flexural properties should be determined in accordance with 8.1.3 along the longitudinal axis and circumferential axis of the installed CIPP.

8.1.5 Short-Term Tensile Properties—The tensile strength should be measured for pressure pipe applications in accordance with Test Method D 638. Specimens should be prepared in accordance with Types I, II, and III of Fig. 1 of Test Method D 638. Specimens greater than 0.55 in. (14 mm) thick should maintain all dimensions for a Type III specimen, except the thickness will be that of the CIPP sample obtained. The rate of specimen testing should be carried out in accordance with Table 1 of Test Method D 638. Specimens should be prepared in accordance with 8.1.1 and tested along the longitudinal axis of the installed CIPP.

8.1.5.1 Fiber-Reinforced CIPP Tensile Testing—Where the CIPP is reinforced with oriented continuous or discontinuous

fibers to enhance the physical properties of the CIPP, specimens should be sampled in accordance with 8.1.2 and tensile properties should be determined in accordance with Test Method D 3039 and tested along the longitudinal axis and circumferential axis of the installed CIPP.

8.1.6 CIPP Wall Thickness-The method of obtaining CIPP wall thickness measurements should be determined in a manner consistent with 8.1.2 of Specification D 5813. Thickness measurements should be made in accordance with Practice D 3567 for samples prepared in accordance with 8.1. Make a minimum of eight measurements at evenly spaced intervals around the circumference of the sample to ensure that minimum and maximum thicknesses have been determined. Deduct from the measured values the thickness of any plastic coatings or CIPP layers not included in the structural design of the CIPP. The average thickness should be calculated using all measured values and shall meet or exceed minimum design thickness as agreed upon between purchaser and seller. The minimum wall thickness at any point shall not be less than 87.5 % of the specified design thickness as agreed upon between purchaser and seller.

8.2 Gravity Pipe Leakage Testing-If required by the owner in the contract documents or purchase order, gravity pipes should be tested using an exfiltration test method where the CIPP is plugged at both ends and filled with water. This test should take place after the CIPP has cooled down to ambient temperature. This test is limited to pipe lengths with no service laterals and diameters of 36 in. or less. The allowable water exfiltration for any length of pipe between termination points should not exceed 50 U.S. gallons per inch of internal pipe diameter per mile per day, providing that all air has been bled from the line. During exfiltration testing, the maximum internal pipe pressure at the lowest end should not exceed 10 ft (3.0 m) of water or 4.3 psi (29.7 kPa), and the water level inside of the inversion standpipe should be 2 ft (0.6 m) higher than the top of the pipe or 2 ft (0.6 m) higher than groundwater level, whichever is greater. The leakage quantity should be gaged by the water level in a temporary standpipe placed in the upstream plug. The test should be conducted for a minimum of 1 h.

Note 4—It is impractical to test pipes above 36 in. diameter for leakage due to the technology available in the pipe rehabilitation industry. Post inspection of larger pipes will detect major leaks or blockages.

8.3 Pressure Pipe Testing—If required by the purchaser in the purchase agreement, pressure pipes should be subjected to a hydrostatic pressure test. A pressure and leakage test at twice the known working pressure or at the working pressure plus 50 psi, whichever is less, is recommended. The pressure should initially be held at the known working pressure for a period not less than 12 h, then increased to the test pressure for an additional period of 2 to 3 h to allow for stabilization of the CIPP. After this period, the pressure test will begin for a minimum of 1 h. The allowable leakage during the pressure test should be 20 U.S. gallons per inch of internal pipe diameter per mile per day, providing that all air has been evacuated from the line prior to testing and the CIPP has cooled down to ambient temperature.

Note 5—The allowable leakage for gravity and pressure pipe testing is a function of water loss at the end seals and trapped air in the pipe.

Copyright by ASTM Int'l (all rights reserved);

Reproduction authorized per License Agreement with ALLAN CLARK (NU FLOW TECHNOLOGIES (2000) IN); Fri Feb 4 10:22:01 EST 2005

🕮 F 1743 – 96 (2003)

8.4 Delamination Test—If required by the purchaser in the purchase agreement, a delamination test should be performed on each installation length specified. CIPP samples should be prepared in accordance with 8.1.2, except that a portion of the fabric tube material in the sample should be dry and isolated from the resin in order to separate tube layers for testing (consult the tube manufacturer for further information). Delamination testing should be in accordance with Test Method D 903 with the following exceptions:

8.4.1 The rate of travel of the power-actuated grip should be 1 in. (25 mm)/min.

8.4.2 Five test specimens should be tested for each installation specified.

8.4.3 The thickness of the test specimen should be minimized, but should be sufficient to adequately test delamination of nonhomogeneous CIPP layers.

8.5 The peel or stripping strength between any nonhomogeneous layers of the CIPP laminate should be a minimum of 10 lb/in. (178.60 g/mm) for typical CIPP applications. Note 6-The purchaser may designate the similar layers between which the delamination test will be conducted.

Note 7—For additional details on conducting the delamination test, contact the seller.

8.6 Inspection and Acceptance—The installation may be inspected visually if appropriate, or by closed-circuit television if visual inspection cannot be accomplished. Variations from true line and grade may be inherent because of the conditions of the original piping. No infiltration of groundwater should be observed. All service entrances should be accounted for and be unobstructed.

9. Keywords

9.1 cured-in-place pipe; installation—underground; plastic pipe—thermoset; rehabilitation; thermosetting resin pipe

APPENDIX

(Nonmandatory Information)

X1. DESIGN CONSIDERATIONS

X1.1 General Guidelines—The design thickness of the CIPP is a function of the resin, materials of construction of the fabric tube, and the condition of the existing pipe. In addition, depending on the condition of the pipe, the design thickness of

the CIPP may also be a function of groundwater, soil type, and influence of live loading surrounding the host pipe. For guidance relating to terminology of piping conditions and related design equations, see Appendix X1 of Practice F 1216.

ASTM International takes no position respecting the validity of any patent rights asserted in connection with any item mentioned in this standard. Users of this standard are expressly advised that determination of the validity of any such patent rights, and the risk of infringement of such rights, are entirely their own responsibility.

This standard is subject to revision at any time by the responsible technical committee and must be reviewed every five years and if not revised, either reapproved or withdrawn. Your comments are invited either for revision of this standard or for additional standards and should be addressed to ASTM International Headquarters. Your comments will receive careful consideration at a meeting of the responsible technical committee, which you may attend. If you feel that your comments have not received a fair hearing you should make your views known to the ASTM Committee on Standards, at the address shown below.

This standard is copyrighted by ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959, United States. Individual reprints (single or multiple copies) of this standard may be obtained by contacting ASTM at the above address or at 610-832-9585 (phone), 610-832-9555 (fax), or service@astm.org (e-mail); or through the ASTM website (www.astm.org).

Copyright by ASTM Int'l (all rights reserved);

7

Reproduction authorized per License Agreement with ALLAN CLARK (NU FLOW TECHNOLOGIES (2000) IN); Fri Feb 4 10:22:01 EST 2005

Amendment to ASTM F1743-96 Author: Doug Kleweno of DGK Technologies

Douglas Kleweno 25124 235th Way SE Maple Valley, WA 93038-5905

May 22, 2001

Whom it may concern:

I am writing this letter at the request of Mr. David Ratliff (Nu Flow Installer, Abilene, Texas) in order to provide clarification for ASTM F1743 "Standard Practice for Rehabilitation of Existing Pipelines and Conduits by Pulled-in-Place Installation of Cured-In-Place Thermosetting Resin Pipe (CIPP)" and similar pulled-in-place products. In my previous position I was the Technical Manager for InLiner USA CIPP products and am the author of ASTM F1743. I have also been involved in editing ASTM F1216 and ASTM D5813, which are also CIPP installation and material specifications, respectively.

When writing an ASTM specification it is necessary to provide enough minimum requirements so that the product can meet or exceed engineering and design criteria. However, ASTM specifications also must be generalized enough to accommodate the majority of products and processes that may want to reference it. F1743 was generally written for most CIPP applications where heated cures predominate in the market. There are many resin applications for CIPP and other products (boat building, automotive, heavy truck) where ambient cure resin formulations are common and used successfully. Technically speaking, an ambient cure formulation for CIPP does initiate at a temperature less that 180F, which is recommended in Section 5.2.3 or F1743.

More critical to CIPP and other applications is whether the product (CIPP in this case) meets the minimum initial structural property recommendations. The minimum properties for the CIPP were provided in Section 4.2.3 of ASTM F1743 and this is probably the most important aspect for the product to meet the requirements for external hydrostatic or soil loading that may surround the pipe. These minimum properties are the numbers by which the minimum design thickness is determined for the installed CIPP or part liner.

As a side note it is my experience that the curing strategy is chosen for handling and transportation purposes. Large liners for CIPP require long catalyzed stability so the product can be processed, transported, and installed. For short runs or tubes processed at a job site, it was common to use ambient or semi-ambient cure formulations to reduce the time at the job site and the associated inconvenience to the surrounding community.

I hope this has provided some additional clarification.

Doug Kleweno (423) 413-8529

NSF International

NSF

August 24, 2005

Page: 1

	TE	ST REP	ORT
10 O C,	P790 IU FLOW TECHNOLOGIES 2000 INC. 010 THORNTON ROAD SOUTH ISHAWA ON L1J 7E2 (ANADA ttn: MR. BOB FOWLE		
10 05 CA	P790 U FLOW TECHNOLOGIES 2000 INC. D10 THORNTON ROAD SOUTH SHAWA ON L1J 7E2 ANADA tn: MR. BOB FOWLE	Plant:	1P790 NU FLOW TECHNOLOGIES 2000 INC. 1010 THORNTON ROAD SOUTH OSHAWA ON L1J 7E2 CANADA Attn: MR. BOB FOWLE
Sample Des	cription:Nu Flow #2000 Pipe Lining - L	iner	
Test Type: Thank you fo	AA - Annual Collection or having your product tested by NSF.	performed on	your product. Your program representative will ues concerning the status of this product.
Test Type: Thank you fo The enclose be contactin	AA - Annual Collection or having your product tested by NSF.	performed on y remaining iss	ues concerning the status of this product.
Test Type: Thank you fo The enclose be contactin	AA - Annual Collection or having your product tested by NSF. Id report details the result of the testing ig you in the near future if there are an	performed on y remaining iss	ues concerning the status of this product.
Test Type: Thank you fo The enclose be contactin Please do n	AA - Annual Collection or having your product tested by NSF. Id report details the result of the testing ig you in the near future if there are an	performed on y remaining iss ny immediate qu	ues concerning the status of this product.
Test Type: Thank you fo The enclose be contactin Please do n Reviewer: CC: Program:	AA - Annual Collection or having your product tested by NSF. Ind report details the result of the testing ing you in the near future if there are an internet to contact us if you have ar <u>Afa</u> <u>C</u> Atabek Ciechanowski - Manager, Engineering ; 010 - Plumbing and Related Programs Rep: AMY CHOKSEY 01 - Domestic	performed on y remaining iss ny immediate qu	ues concerning the status of this product.
Test Type: Thank you fo The enclose be contactin Please do n Reviewer: CC: Program: Program Region: PA Project	AA - Annual Collection or having your product tested by NSF. Ind report details the result of the testing ing you in the near future if there are an int hesitate to contact us if you have ar <u>AL</u> <u>L</u> <u>L</u> Atabek Ciechanowski - Manager, Engineering : 010 - Plumbing and Related Programs Rep: AMY CHOKSEY 01 - Domestic ct: 224520	performed on y remaining iss y immediate q _ g Laboratory	ues concerning the status of this product. Jestions pertaining to your product. Status: Pass
Test Type: Thank you fo The enclose be contactin Please do n Reviewer: CC: Program Region: PA Project Fi2005082412 This report sha Certification of	AA - Annual Collection or having your product tested by NSF. ed report details the result of the testing ing you in the near future if there are an not hesitate to contact us if you have ar <u>AL</u> <u>L</u> <u>L</u> Atabek Ciechanowski - Manager, Engineering ; 010 - Plumbing and Related Programs Rep: AMY CHOKSEY 01 - Domestic ct: 224520 20213 all not be reproduced, except in its entirety, with ir authorization to use the NSF Mark. Authorizat isting, (www.nsf.org). The results relate only to 789 N. Dixboro Roa	J-00012414 out the written app on to use the NSF	Page 1 of roval of NSF. This report does not represent NSF Mark is limited to products appearing in the Company's I.

General Infor	nation
Standard: 014	- PLASTICS PIPING SYSTEM COMPONENTS AND RELATED MATERIALS
	DCC Number / Tracking ID PL04249
	Family Code A
	Material Type Epoxy
	Monitor Code A
	Performance Standard F1216
	Performance Standard Year 2003
	Product Identifier Part A Batch # 030904, Part B Batch # 040405_3
	Sample Description Liner
	Trade Designation Nu Flow #2000 Pipe Lining
Somela Id:	E 0000161500

Sample Id: S-0000161582 Nu Flow #2000 Pipe Lining - Liner Description: Sampled Date: 05/19/2005 **Received Date:** 05/23/2005

Gravity Pipe Leakage Test	·	
Initial water column;		feet
Final water column:	10	feet
Time:	10	
	60	minutes
Leakage rate:	0	g/in/day
Required maximum leakage rate:	50	g/in/day
Actual leakage rate:	0	g/in/day
Gravity Pipe Leakage Test: Flex Modulus	Pass	
Specimens conditioned for		1
	40	hours
Specimens conditioned at Relative humidity		degrees F
	50	%
Test temperature Required	73	degrees F
Test temperature Actual	73	degrees F
Required crosshead speed	0.22	in/min
Actual crosshead speed	0.22	in/mìn
Deflection		%
Specimen 1	280000	psi
Specimen 2	315000	psi
Specimen 3	275000	psi
Specimen 4	242000	psi
Specimen 5	257000	psi
Required Average Modulus (minimum)	250000 psi	
Actual Average Modulus	274000	psi
Flex Modulus Test	PASS	
Flexural Strength Test		·
Specimens conditioned for	40	hours
Specimens conditioned at	73	degrees F
Relative Humidity	50	percent
Test Temperature		degrees F
Cross Head Speed	0.22	in/min
Specimen 1 Flexural Strength	6280	psi
Specimen 2 Flexural Strength	6480	psi
Specimen 3 Flexural Strength Specimen 4 Flexural Strength	6010	psi

FI20050824120213

J-00012414

Page 2 of 4

This report shall not be reproduced, except in its entirety, without the written approval of NSF. This report does not represent NSF Certification or authorization to use the NSF Mark. Authorization to use the NSF Mark is limited to products appearing in the Company's Official NSF Listing, (www.nsf.org). The results relate only to those items tested.

Original reports bear a light blue NSF Mark and border.

÷

Testing Parameter	Result	Units *	
ingineering Lab (Cont'd)			
Specimen 5 Flexural Strength	5820	psi	
Average Flexural Strength	5960	psi	
Required Flexural Strength	4500	psi	
Flexural Strength Test	Pass		
Strength, Tensile			
Specimens conditioned for	40	hours	
Specimens conditioned at	73	degrees F	
Relative humidity	50	%	
Test Temperature	73	degrees F	
Actual Crosshead Speed	0.2	in/min.	
Required Crosshead Speed	0.2	in/min.	
Specimen 1: Tensile Strength	3930	psi	
Specimen 2: Tensile Strength	4540	psi	
Specimen 3: Tensile Strength	4010	psi	
Specimen 4: Tensile Strength	3690	psi	
Specimen 5: Tensile Strength	3920	psì	
Req'd Average Tensile Strength (minimum)	3000		
Actual Average Tensile Strength	4020	psi	
Tensile Strength Test	PASS		
Specimen Fabrication			
Specimen Fabrication	COMPLETE		
Time	1	hours	
Technician	3356		

J-00012414

Page 3 of 4

This report shall not be reproduced, except in its entirety, without the written approval of NSF. This report does not represent NSF Certification or authorization to use the NSF Mark. Authorization to use the NSF Mark is limited to products appearing in the Company's Official NSF Listing, (www.nsf.org). The results relate only to those items tested.

Page: 3

	ld	Address
All work performed at:	→ NSF_AA	NSF International
		789 Dixboro Road
		Ann Arbor MI 48105-0140
		USA

References to Testing Procedures;

NSF Reference	Parameter / Test Description
P3084	Gravity Pipe Leakage Test
P3122	Flex Modulus
P3123	Flexural Strength Test
P3127	Strength, Tensile
P3172	Specimen Fabrication

FI20050824120213 Final_Std

This report shall not be reproduced, except in its entirety, without the written approval of NSF. This report does not represent NSF Certification or authorization to use the NSF Mark. Authorization to use the NSF Mark is limited to products appearing in the Company's Official NSF Listing, (www.nsf.org). The results relate only to those items tested.

Original reports hear a light blue NSF Mark and border.

Page 4 of 4

Page: 4

NU FLOW TECHNOLOGIES 2000 INC. 1010 Thornton Road South Oshawa, Ontario L1J 7E2

Laboratory Report

Attention	Client's Order Number	Date	Report Number
Sinan Omari	9282	16 March 2007	07-845
Client's Material / Product Des	cription Date .	Sample Received	Material / Product Specification
(1) Sample	06	March 2007	ASTM D5813-04
Test Performed		Res	sult
1. <u>Tangent Flexural Modulus</u> (ASTM D790)			
 Crosshead speed: 0.0. 1000 lbf Load cell 		1 384	400
 2 inch support span L/D = 16 	2	3 304	250,000 psi 600 Minimum
 Specimen Geometry: 1/8" x 1/2" x 4" 	4		2100 2100
5 specimens testedUnits: psi	Ave	rage 386	500
2. Flexural Strength	Samp	ale #	
(ASTM D790)	<u>Jump</u>	<u>60</u>	70
 5 specimens tested 			
Units: psi			00 4,500 psi Minimum
	1	4 62	00
	<u> </u>		
	Aver	rage 61	60
3. Wall Thickness	Sid	e A Side	e B
Units: mm	3.		26
 Four measurements tal 	3.0	62 3.4	15
each side	3.0		
cach side	3.7	79 3.7	74

Telephone (905) 673-9899

Address 2421 Drew Road Mississauga. Ontario Canada LSS 1A1

Facsimile (905) 673-8394

E-mail aahlawat@acuren.com

Web www.acuren.com

Coi Di

Corrine Dimnik, B.Sc. Certified Inspector.

Dr. Erhan Ulvan, Ph. D, P. Eng.,

Laboratory Manager.

(i) The information provided by the services described here will relate only to the material tested. No representations will be made that similar materials on the built material will exhibit like properties. (ii) No publication in which case the document must be submitted in its environment of Acurent ball be made will be wade will be wade will be wade will be wade water water and water water

Page:

002/002

Flow Comparisons

Comparison between a new pipe and a rehabilitated pipe

Diam	leter	Hazen Williams	Flow for new pipe	Thickness of Liner (mm)	Resulting internal	Hazen Williams	Flow for rehabilitated	% Loss
(m)	(in)	Coefficient (C)	(m ³ /s)		diameter (m)	coefficient (C)	pipe (m ³ /s)	
0.15	6	140	0.27	2	0.146	140	0.25	-6.86
0.20	8	140	0.57	2	0.196	140	0.54	-5.17
0.30	10	140	1.02	2	0.246	140	0.98	-4.15
0.40	12	140	1.65	2.5	0.295	140	1.57	-4.32

Comparison between old pipe and a rehabilitated pipe

Old Pip	e Hazen Williams	Flow for	Thickness of	Old Pipe	Hazen Williams	Flow for	%
Diamete	er Coefficient (C)	old pipe	Liner (mm)	diameter (m)	coefficient (C)		Increase
		(m³/s)				(m ³ /s)	
(m) (ir)						
0.13 6	60	0.08	2	0.146	140	0.25	216.63
0.18 8	60	0.18	2	0.196	140	0.54	191.91
0.23 10	60	0.35	2	0.246	140	0.98	178.48
0.27 12	2 60	0.53	2.5	0.295	140	1.57	194.52

Page:

1			
Date Proposal Submitted	4/2/2010	Section	1003.3.4
Chapter	10	TAC Recommendation	Pending Review
Affects HVHZ	No	Commission Action	Pending Review
Proponent	Paul Bohres	General Comments	No
Attachments	No	Alternate Language	No

Related Modifications

None.

Summary of Modification

Provides a level of environmental protection from decomposition of these devices from both the interior and exterior environments that these devices are subject to.

Rationale

Failures of existing grease interceptors pose a risk to contamination of our environment. This proposal attempts to set a standard by which the decomposition of these devices will be significantly decreased.

Fiscal Impact Statement

Impact to local entity relative to enforcement of code

None.

Impact to building and property owners relative to cost of compliance with code Unknown.

Impact to industry relative to the cost of compliance with code

Unknown.

Requirements

- Has a reasonable and substantial connection with the health, safety, and welfare of the general public
- Helps to further prevent decomposition of these devices and further prevent contamination of our environment.
- Strengthens or improves the code, and provides equivalent or better products, methods, or systems of construction Strengthens the code by setting a higher standard of performance.
- Does not discriminate against materials, products, methods, or systems of construction of demonstrated capabilities No.

Does not degrade the effectiveness of the code

This proposal seeks to set a measurable level of performance.

1003.3.4 Grease interceptors and automatic grease removal devices. Grease interceptors and automatic grease removal devices shall be sized in accordance with PDI G101, ASME A112.14.3 Appendix A, or ASME A112.14.4. Grease interceptors and automatic grease removal devices shall be designed and tested in accordance with PDI G101, ASME A112.14.3 or ASME A112.14.4. Grease interceptors and automatic grease removal devices shall be designed and tested in accordance with PDI G101, ASME A112.14.3 or ASME A112.14.4. Grease interceptors and automatic grease removal devices shall be installed in accordance with the manufacturer's instructions. Grease interceptors shall be constructed to withstand a water-hydrogen ion concentration (pH value) of 1.5 to 14 on all interior surfaces and exterior surfaces.

Exception: Interceptors that have a volume of not less than 500 gallons (1893 L) and that are located outdoors shall not be required to meet the requirements of this section.

Page:

Date Proposal Submitted	4/1/2010	Section	1102.1
Chapter	11	TAC Recommendation	Pending Review
Affects HVHZ	No	Commission Action	Pending Review
Proponent	Allen Johnson	General Comments	No
Attachments	Yes	Alternate Language	No

Related Modifications

702.1, 702.2, 702.3, 1102.2, 1102.3, 1102.4

Summary of Modification

Modify the current building materials list to include Cure-In Place (CIPP) Thermosetting Resin Conduit Liner that meets ASTM F-1743, ASTM F-1216, ASTM D790, ASTM D638 and ASTM D543. in sections 702.1,702.2, 702.3, 1102.1, 1102.2, 1102.3 and 1102.4 for building drains and building sewer pipes.

Rationale

CIPP liners are an alternative to traditional pipe replacement that increases the flow charicteristics of the pipe.

Fiscal Impact Statement

Impact to local entity relative to enforcement of code

There are no additional costs relative to enforcement compared to traditional replacement.

Impact to building and property owners relative to cost of compliance with code

There is a significant cost savings to building and property owners as well as reducing potentially hazardous materials left undisturbed as compared to traditional pipe replacement CIPP liners are seamless and jointless, reducing the number of potential failures.

Impact to industry relative to the cost of compliance with code

There is no impact to the industry relative to the cost of compliance with code.

Requirements

Has a reasonable and substantial connection with the health, safety, and welfare of the general public

CIPP lining eliminates the destruction of landscapes and property as well as the health dangers associated with removing of sewer pipes in need of repair.

Strengthens or improves the code, and provides equivalent or better products, methods, or systems of construction

CIPP liners provide a repair solution that allows drain, waste and sewer pipes to be repaired without the digging and destruction required for traditional pipe repairs or replacement.

Does not discriminate against materials, products, methods, or systems of construction of demonstrated capabilities CIPP lining can be installed in any type of host pipe used for Building drains and Building sewer pipes for residential, commercial

and industrial applications.

Does not degrade the effectiveness of the code

CIPP lining does not degrade the effectiveness of the code.

SECTION 702 MATERIALS

P4316 Text Modification

702.1 Above-ground sanitary drainage and vent pipe. Above-ground soil, waste and vent pipe shall conform to one of the standards listed in Table 702.1.

TABLE 702.1 ABOVE-GROUND DRAINAGE AND VENT PIPE

MATERIAL	STANDARD			
Acrylonitrile butadiene styrene (ABS) plastic pipe in IPS diameters, including Schedule 40, DR 22 (PS 200) and DR 24 (PS 140); with a solid, cellular core or composite wall	ASTM D 2661; ASTM F 628; ASTM F 1488; CSA B181.1			
Brass pipe	ASTM B 43			
Cast-iron pipe	ASTM A 74; ASTM A 888; CISPI 301			
Copper or copper-alloy pipe	ASTM B 42; ASTM B 302			
Copper or copper-alloy tubing (Type K, L, M or DWV)	ASTM B 75; ASTM B 88; ASTM B 251; ASTM B 306			
Galvanized steel pipe	ASTM A 53			
Glass pipe	ASTM C 1053			
Polyolefin pipe	ASTM F 1412; CAN/CSA B181.3			
Polyvinyl chloride (PVC) plastic pipe in IPS diameters, including schedule 40, DR 22 (PS 200), and DR 24 (PS 140); with a solid, cellular core or composite wall	ASTM D 2665; ASTM F 891; ASTM F 1488; CSA B181.2			
Polyvinyl chloride (PVC) plastic pipe with a 3.25-inch O.D. and a solid, cellular core or composite wall	ASTM D 2949, ASTM F 1488			
Polyvinylidene fluoride (PVDF) plastic pipe	ASTM F 1673; CAN/CSA B181.3			
Stainless steel drainage systems, Types 304 and 316L	ASME A112.			
Cured-In Place Thermosetting Resin Conduit Liner (CIPP)	<u>ASTM F1743, ASTM F1216, ASTM</u> <u>D790, ASTM D638, ASTM D543</u>			

Designation: F 1743 - 96 (Reapproved 2003)

An American National Standard

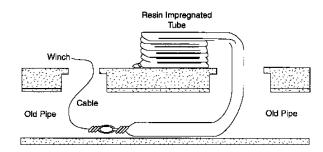
Standard Practice for Rehabilitation of Existing Pipelines and Conduits by Pulledin-Place Installation of Cured-in-Place Thermosetting Resin Pipe (CIPP)¹

This standard is issued under the fixed designation F 1743; the number immediately following the designation indicates the year of original adoption or, in the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. A superscript epsilon (ϵ) indicates an editorial change since the last revision or reapproval.

1. Scope

1.1 This practice describes the procedures for the reconstruction of pipelines and conduits (4 to 96 in. (10 to 244 cm) diameter) by the pulled-in-place installation of a resinimpregnated, flexible fabric tube into an existing conduit and secondarily inflated through the inversion of a calibration hose by the use of a hydrostatic head or air pressure (see Fig. 1). The resin is cured by circulating hot water or by the introduction of controlled steam into the tube. When cured, the finished cured-in-place pipe will be continuous and tight fitting. This reconstruction process may be used in a variety of gravity and pressure applications such as sanitary sewers, storm sewers, process piping, electrical conduits, and ventilation systems.

1.2 The values stated in inch-pound units are to be regarded as the standard. The values given in parentheses are for informational purposes only.


Note 1—There are no ISO standards covering the primary subject matter of this practice.

1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

2. Referenced Documents

2.1 ASTM Standards:

- D 543 Test Method of Resistance of Plastics to Chemical $\ensuremath{\mathsf{Reagents}}^2$
- D 638 Test Method for Tensile Properties of Plastics²
- D 790 Test Methods for Flexural Properties of Unreinforced and Reinforced Plastics and Electrical Insulating Materials²
- D 903 Test Method for Peel or Stripping Strength of Adhesive Bonds^3

Step 1 - Pull resin-impregnated tube into existing pipe.

Step 2 - Calibration hose inversion

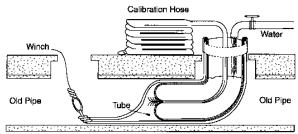


FIG. 1 Cured-in-Place Pipe Installation Methods

- D 1600 Terminology for Abbreviated Terms Relating to $\ensuremath{\text{Plastics}}^2$
- D 1682 Test Method for Breaking Load and Elongation of Textile ${\rm Fabrics}^4$
- D 3039/D3039M Test Method for Tensile Properties of Polymer Matrix Composite Materials⁵

⁴ Discontinued: See 1991 Annual Book of ASTM Standards, Vol 07.01. ⁵ Annual Book of ASTM Standards, Vol 15.03.

Copyright © ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959, United States.

1

Copyright by ASTM Int'l (all rights reserved); Reproduction authorized per License Agreement with ALLAN CLARK (NU FLOW TECHNOLOGIES (2000) IN); Fri Feb 4 10:22:01 EST 2005

2010 Triennial

¹ This practice is under the jurisdiction of ASTM Committee F-17 on Plastic Piping Systems and is the direct responsibility of Subcommittee F17.67 on Trenchless Plastic Pipeline Technology.

Current edition approved Feb. 10, 2003. Published April 2003. Last previous edition approved in 1996 as F1743-96.

² Annual Book of ASTM Standards, Vol 08.01.

³ Annual Book of ASTM Standards, Vol 15.06.

- D 3567 Practice for Determining Dimensions of Reinforced Thermosetting Resin Pipe (RTRP) and Fittings⁶
- D 4814 Specification for Automotive Spark—Ignition Engine Fuel^7
- D 5813 Specification for Cured-in-Place Thermosetting Resin Sewer Pipe^6
- F 412 Terminology Relating to Plastic Piping Systems⁶
- F 1216 Practice for Rehabilitation of Existing Pipelines and Conduits by the Inversion and Curing of a Resin-Impregnated Tube⁶
- 2.2 AWWA Standard:
- M28 Manual on Cleaning and Lining Water Mains⁸
- 2.3 NASSCO Standard:
- Recommended Specifications for Sewer Collection System Rehabilitation⁹

Note 2—An ASTM specification for cured-in-place pipe materials appropriate for use in this practice is under preparation and will be referenced in this practice when published.

3. Terminology

3.1 *General*—Definitions are in accordance with Terminology F 412. Abbreviations are in accordance with Terminology D 1600, unless otherwise indicated.

3.2 Definitions of Terms Specific to This Standard:

3.2.1 *calibration hose*—an impermeable bladder which is inverted within the resin-impregnated fabric tube by hydrostatic head or air pressure and may optionally be removed or remain in place as a permanent part of the installed cured-in-place pipe as described in 5.2.2.

3.2.2 cured-in-place pipe (CIPP)—a hollow cylinder consisting of a fabric tube with cured (cross-linked) thermosetting resin. Interior or exterior plastic coatings, or both, may be included. The CIPP is formed within an existing pipe and takes the shape of and fits tightly to the pipe.

3.2.3 delamination-separation of layers of the CIPP.

3.2.4 *dry spot*—an area of fabric of the finished CIPP which is deficient or devoid of resin.

3.2.5 *fabric tube*—flexible needled felt, or equivalent, woven or nonwoven material(s), or both, formed into a tubular shape which during the installation process is saturated with resin and holds the resin in place during the installation and curing process.

3.2.6 *inversion*—the process of turning the calibration hose inside out by the use of water pressure or air pressure.

3.2.7 *lift*—a portion of the CIPP that is a departure from the existing conduit wall forming a section of reverse curvature in the CIPP.

4. Significance and Use

4.1 This practice is for use by designers and specifiers, regulatory agencies, owners, and inspection organizations who are involved in the rehabilitation of conduits through the use of

a resin-impregnated fabric tube pulled-in-place through an existing conduit and secondarily inflated through the inversion of a calibration hose. Modifications may be required for specific job conditions.

5. Recommended Materials and Manufacture

5.1 *General*—The resins, fabric tube, tube coatings, or other materials, such as the permanent calibration hose when combined as a composite structure, shall produce CIPP that meets the requirements of this specification.

5.2 *CIPP Wall Composition*—The wall shall consist of a plastic coated fabric tube filled with a thermosetting (cross-linked) resin, and if used, a filler.

5.2.1 Fabric Tube-The fabric tube should consist of one or more layers of flexible needled felt, or equivalent, woven or nonwoven material(s), or both, capable of carrying resin, withstanding installation pressures, and curing temperatures. The material(s) of construction should be able to stretch to fit irregular pipe sections and negotiate bends. Longitudinal and circumferential joints between multiple layers of fabric should be staggered so as not to overlap. The outside layer of the fabric tube should have an impermeable flexible coating(s) whose function is to contain the resin during and after fabric tube impregnation. The outer coating(s) must facilitate monitoring of resin saturation of the material(s) of construction of the fabric tube. The fabric tube should be fabricated to a size that, when installed, will tightly fit the internal circumference and the length of the original conduit. Allowance should be made for circumferential and longitudinal stretching of the fabric tube during installation. As required, the fabric tube should meet minimum tensile strength requirements in the longitudinal and transverse directions as specified in 7.1. All the material(s) of construction for the fabric tube should be compatible with the resin system used.

5.2.2 Calibration Hose:

5.2.2.1 *Removable Calibration Hose*—The removable calibration hose should consist of an impermeable plastic, or impermeable plastic coating(s) on flexible woven or nonwoven material(s), or both, that do not absorb resin and are capable of being removed from the CIPP.

5.2.2.2 Permanent Calibration Hose-The permanent calibration hose should consist of an impermeable plastic coating on a flexible needled felt or equivalent woven or nonwoven material(s), or both, that are capable of absorbing resin and are of a thickness to become fully saturated with resin. The calibration hose should be translucent to facilitate postinstallation inspection. The calibration hose should be fabricated to a size that, when installed, will tightly fit the internal circumference and the length of the resin saturated fabric tube. Once inverted, the calibration hose becomes part of the fabric tube, and once properly cured, should bond permanently with the fabric tube. The properties of the calibration hose should meet minimum tensile strength requirements in the longitudinal and transverse directions as specified in 7.1. All the material(s) of construction for the calibration hose should be compatible with the resin system used.

5.2.3 *Resin*—A chemically resistant isophthalic based polyester, or vinyl ester thermoset resin and catalyst system or an

Copyright by ASTM Int'l (all rights reserved);

2

Reproduction authorized per License Agreement with ALLAN CLARK (NU FLOW TECHNOLOGIES (2000) IN); Fri Feb 4 10:22:01 EST 2005

⁶ Annual Book of ASTM Standards, Vol 08.04.

⁷ Annual Book of ASTM Standards, Vol 05.03.

⁸ Available from the American Water Works Association, 6666 W. Quincey Ave., Denver, CO 80235.

⁹ Available from the National Association of Sewer Service Companies, 101 Wymore Rd., Suite 501, Altamonte, FL 32714.

epoxy resin and hardener that is compatible with the installation process should be used. The resin should be able to cure in the presence of water and the initiation temperature for cure should be less than 180°F (82.2°C). The cured resin/fabric tube system, with or without the calibration hose, shall be expected to have as a minimum the initial structural properties given in Table 1. These physical properties should be determined in accordance with Section 8. The cured resin/fabric tube system, with or without the calibration hose, should meet the minimum chemical resistance requirements as specified in 7.2.

6. Installation Recommendations

6.1 Cleaning and Pre-Inspection:

6.1.1 Prior to entering access areas, such as manholes, and performing inspection or cleaning operations, an evaluation of the atmosphere to determine the presence of toxic or flammable vapors or lack of oxygen must be undertaken in accordance with local, state, or federal safety regulations.

6.1.2 *Cleaning of Pipeline*—All internal debris should be removed from the original pipeline. Gravity pipes should be cleaned with hydraulically powered equipment, high-velocity jet cleaners, or mechanically powered equipment in accordance with NASSCO Recommended Specifications for Sewer Collection System Rehabilitation. Pressure pipelines should be cleaned with cable attached devices or fluid propelled devices in accordance with AWWA M28.

6.1.3 Inspection of Pipelines—Inspection of pipelines should be performed by experienced personnel trained in locating breaks, obstacles, and service connections by closedcircuit television or man entry. The interior of the pipeline should be carefully inspected to determine the location of any conditions that may prevent proper installation of the impregnated tube, such as protruding service taps, collapsed or crushed pipe, and reductions in the cross-sectional area of more than 40 %. These conditions should be noted so that they can be corrected.

6.1.4 *Line Obstructions*—The original pipeline should be clear of obstructions such as solids, dropped joints, protruding service connections, crushed or collapsed pipe, and reductions in the cross-sectional area of more than 40 % that may hinder or prevent the installation of the resin-impregnated fabric tube. If inspection reveals an obstruction that cannot be removed by conventional sewer-cleaning equipment, then a point-repair excavation should be made to uncover and remove or repair the obstruction.

6.2 *Resin Impregnation*—The fabric tube should be totally impregnated with resin (wet-out) and run through a set of rollers separated by a space, calibrated under controlled conditions to ensure proper distribution of resin. The volume of

TABLE 1	CIPP	Initial	Structural	Pro	perties ⁴
IADEE I		mmuuu	onacianar		pernea

Property	Test Method –	Minimum Value	
Flopeity	Test Method -	psi	(MPa)
Flexural strength	D 790	4 500	(31)
Flexural modulus	D 790	250 000	(1724)
Tensile strength (for pressure pipes only)	D 638	3 000	(21)

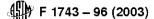
^AThe values in Table 1 are for field inspection. The purchaser should consult the manufacturer for the long-term structural properties.

resin used should be sufficient to fully saturate all the voids of the fabric tube material, as well as all resin-absorbing material of the calibration hose at nominal thickness and diameter. The volume should be adjusted by adding 3 to 15 % excess resin to allow for the change in resin volume due to polymerization, the change in resin volume due to thermal expansion or contraction, and resin migration through the perforations of the fabric tube and out onto the host pipe.

6.3 *Bypassing*—If bypassing of the flow is required around the sections of pipe designated for reconstruction, the bypass should be made by plugging the line at a point upstream of the pipe to be reconstructed and pumping the flow to a downstream point or adjacent system. The pump and bypass lines should be of adequate capacity and size to handle the flow. Services within this reach will be temporarily out of service.

6.3.1 Public advisory services shall notify all parties whose service laterals will be out of commission and advise against water usage until the main line is back in service.

6.4 Installation Methods:


6.4.1 Perforation of Resin-Impregnated Tube—Prior to pulling the resin-impregnated fabric tube in place, the outer impermeable plastic coating may optionally be perforated. When the resin-impregnated fabric tube is perforated, this should allow resin to be forced through the perforations and out against the existing conduit by the force of the hydrostatic head or air pressure against the inner wall of the calibration hose. The perforation should be done after fabric tube impregnation with a perforating roller device at the point of manufacture or at the jobsite. Perforations should be made on both sides of the lay-flat fabric tube covering the full circumference with a spacing no less than 1.5 in. (38.1 mm) apart. Perforating slits should be a minimum of 0.25 in. (6.4 mm) long.

6.4.2 Pulling Resin-Impregnated Tube into Position-The wet-out fabric tube should be pulled into place using a power winch. The saturated fabric tube should be pulled through an existing manhole or other approved access to fully extend to the next designated manhole or termination point. Care should be exercised not to damage the tube as a result of friction during pull-in, especially where curvilinear alignments, multilinear alignments, multiple offsets, protruding services, and other friction-producing host pipe conditions are present. Once the fabric tube is in place, it should be attached to a vertical standpipe so that the calibration hose can invert into the center of the resin-impregnated fabric tube. The vertical standpipe should be of sufficient height of water head to hold the fabric tube tight to the existing pipe wall, producing dimples at side connections. A device such as a dynamometer or load cell should be provided on the winch or cable to monitor the pulling force. Measure the overall elongation of the fabric tube after pull-in completion. The acceptable longitudinal elongation shall not be more than 5 % of the overall length measured after the calibration hose has been installed, or exceed the recommended pulling force.

6.4.3 Hydrostatic Head Calibration Hose Inversion—The calibration hose should be inserted into the vertical inversion standpipe, with the impermeable plastic membrane side out. At the lower end of the inversion standpipe, the calibration hose should be turned inside out and attached to the standpipe so

3

Copyright by ASTM Int'l (all rights reserved); Reproduction authorized per License Agreement with ALLAN CLARK (NU FLOW TECHNOLOGIES (2000) IN); Fri Feb 4 10:22:01 EST 2005

that a leakproof seal is created. The resin-impregnated fabric tube should also be attached to the standpipe so that the calibration hose can invert into the center of the resinimpregnated tube. The inversion head should be adjusted to be of sufficient height of water head to cause the calibration hose to invert from the initial point of inversion to the point of termination and hold the resin-impregnated fabric tube tight to the pipe wall, producing dimples at side connections. Care should be taken during the inversion so as not to overstress the felt fiber. At the request of the purchaser, the fabric tube manufacturer should provide information on the maximum allowable axial and longitudinal tensile stress for the fabric tube.

6.4.3.1 An alternative method of installation is top inversion. In this case, the calibration hose and resin-impregnated fabric tube are attached to a top ring. In this case, the tube itself forms the standpipe for generation of the hydrostatic head. Other methods of installation are also available and should be submitted for acceptance by the purchaser.

6.4.4 Using Air Pressure-The resin-impregnated fabric tube should be perforated as described in 6.4.1. Once perforated, the wet-out fabric tube should be pulled into place using a power winch as described in 6.4.2. The calibration hose should be inserted through the guide chute or tube of the pressure containment device in which the calibration hose has been loaded, with the impermeable plastic membrane side out. At the end of the guide chute, the calibration hose should be turned inside out and attached so that a leakproof seal is created. The resin-impregnated tube should also be attached to the guide chute so that the calibration hose can invert into the center of the resin-impregnated tube. The inversion air pressure should be adjusted to be of sufficient pressure to cause the calibration hose to invert from point of inversion to point of termination and hold the resin saturated fabric tube tight to the pipe wall, producing dimples at side connections. Care should be taken during the inversion so as not to overstress the woven and nonwoven materials. Take suitable precautions to eliminate hazards to personnel in the proximity of the construction when pressurized air is being used.

6.5 Lubricant During Installation—The use of a lubricant during installation is recommended to reduce friction during inversion. This lubricant should be poured into the fluid in the standpipe in order to coat the calibration hose during inversion. When air is used to invert the calibration hose, the lubricant should be applied directly to the calibration hose. The lubricant used should be a nontoxic, oil-based product that has no detrimental effects on the tube or boiler and pump system, and will not adversely affect the fluid to be transported.

6.6 Curing:

6.6.1 Using Circulating Heated Water—After installation is completed, suitable heat source and water recirculation equipment are required to circulate heated water throughout the section to uniformly raise the water temperature above the temperature required to effect a cure of the resin. The water temperature in the line during the cure period should be as recommended by the resin manufacturer or seller.

6.6.1.1 The heat source should be fitted with suitable monitors to measure the temperature of the incoming and

outgoing water supply. Temperature sensors should also be placed between the resin-impregnated tube and the host pipe invert at both termination points to monitor the temperatures during cure.

6.6.1.2 Initial cure will occur during temperature heat-up and is completed when exposed portions of the CIPP appear to be hard and sound and the remote temperature sensor indicates that the temperature is of a magnitude to realize an exotherm or cure in the resin. After initial cure is reached, the temperature should be raised to the post-cure temperature and held there for a period recommended by the resin manufacturer or seller. During post-cure, the recirculation of the water and cycling of the boiler to maintain the temperature continues. The curing of the CIPP must take into account the existing pipe material, the resin system, and ground conditions (temperature, moisture level, and thermal conductivity of soil).

6.6.2 Using Steam—After installation is completed, suitable steam-generating equipment is required to distribute steam throughout the pipe. The equipment should be capable of delivering steam throughout the section to uniformly raise the temperature within the pipe above the temperature required to effect a cure of the resin. The temperature in the line during the cure period should be as recommended by the resin manufacturer or seller.

6.6.2.1 The steam-generating equipment should be fitted with a suitable monitor to measure the temperature of the outgoing steam. Temperature sensors should also be placed between the resin-impregnated tube and the host pipe invert at both termination points to monitor the temperatures during cure.

6.6.2.2 Initial cure will occur during temperature heat-up and is completed when exposed portions of the new pipe appear to be hard and sound and the remote temperature sensor indicates that the temperature is of a magnitude to realize an exotherm or cure in the resin. After initial cure is reached, the temperature should be raised to the post-cure temperature and held there for a period recommended by the resin manufacturer or seller, during which time the distribution and control of steam to maintain the temperature continues. The curing of the CIPP must take into account the existing pipe material, the resin system, and ground conditions (temperature, moisture level, and thermal conductivity of soil).

6.6.3 *Required Pressures*—As required by the purchase agreement, the estimated maximum and minimum pressure required to hold the flexible tube tight against the existing conduit during the curing process should be provided by the seller and shall be increased to include consideration of external ground water, if present. Once the cure has started and dimpling for laterals is completed, the required pressures should be maintained until the cure has been completed. For water or steam, the pressure should be maintained within the estimated maximum and minimum pressure during the curing process. If the steam pressure or hydrostatic head drops below the recommended minimum during the cure, the CIPP should be inspected for lifts or delaminations and evaluated for its ability to fully meet the applicable requirements of 6.8 and Section 8.

6.7 Cool-Down:

Copyright by ASTM Int'l (all rights reserved);

Reproduction authorized per License Agreement with ALLAN CLARK (NU FLOW TECHNOLOGIES (2000) IN); Fri Feb 4 10:22:01 EST 2005

P4316 Text Modification

6.7.1 Using Cool Water after Heated Water Cure—The new CIPP should be cooled to a temperature below 100°F (38°C) before relieving the static head in the inversion standpipe. Cool-down may be accomplished by the introduction of cool water into the inversion standpipe to replace water being drained from a small hole made in the downstream end. Take care to cool down the CIPP in a controlled manner, as recommended by the resin manufacturer or the seller. Care should be taken to release the static head so that a vacuum will not be developed that could damage the newly installed CIPP.

6.7.2 Using Cool Water after Steam Cure—The new CIPP should be cooled to a temperature below 100°F (38°C) before relieving the internal pressure within the section. Cool-down may be accomplished by the introduction of cool water into the section to replace the mixture of air and steam being drained from a small hole made in the downstream end. Take care to cool the CIPP in a controlled manner as recommended by the resin manufacturer or the seller. Care should be taken to release the air pressure so that a vacuum will not be developed that could damage the newly installed CIPP.

6.8 Workmanship—The finished CIPP should be continuous over the entire length of an installation and be free of dry spots, lifts, and delaminations. If these conditions are present, the CIPP will be evaluated for its ability to meet the applicable requirements of Section 8. Where the CIPP does not meet the requirements of Section 8 or specifically stated requirements of the purchase agreement, or both, the affected portions of CIPP will be removed and replaced with an equivalent repair.

6.8.1 If the CIPP does not fit tightly against the original pipe at its termination point(s), the full circumference of the CIPP exiting the existing host pipe or conduit should be sealed by filling with a resin mixture compatible with the CIPP.

6.9 Service Connections—After the new CIPP has been installed, the existing active (or inactive) service connections should be reinstated. This should generally be done without excavation, and in the case of non-man entry pipes, from the interior of the pipeline by means of a television camera and a remote-control cutting device. Service connections shall be reinstated to at least 90 % of the original area as it enters the host pipe or conduit.

Note 3—In many cases, a seal is provided where the formed CIPP dimples at service connections. However, this practice should not be construed to provide a 100 % watertight seal at all service connections. If total elimination of infiltration and inflow is desired, other means, which are beyond the scope of this practice, may be necessary to seal service connections and to rehabilitate service lines and manholes.

7. Material Requirements

7.1 Fabric Tube Strength—If required by the purchaser in the purchase agreement, the fabric tube, and seam (if applicable) as a quality control test, when tested in accordance with Test Method D 1682 shall have a minimum tensile strength of 750 psi (5 MPa) in both the longitudinal and transverse directions.

7.2 Chemical Resistance:

7.2.1 Chemical Resistance Requirements—The cured resin/ fabric tube matrix, with or without the calibration hose, shall be evaluated in a laminate form for qualification testing of long-term chemical exposure to a variety of chemical effluents and should be evaluated in a manner consistent with 6.4.1 of Specification D 5813. The specimens shall be capable of exposure to the solutions in Table 2 at a temperature of $73.4 \pm 3.6^{\circ}$ F (23 \pm 2°C), with a percentage retention of flexural modulus of elasticity of at least 80% after one year exposure. Flexural properties, after exposure to the chemical solution(s), shall be based on dimensions of the specimens after exposure.

7.2.2 Chemical Resistance Procedures—The CIPP laminates should be constructed of identical fabric and resin components that will be used for anticipated in-field installations. The cured resin/fabric tube laminates, with or without the calibration hose should be exposed to the chemical agents in a manner consistent with Test Method D 543. The edges of the test coupons should be left exposed and not treated with resin, unless otherwise specified by the purchaser. The specimen thicknesses should be in the range of 0.125 to 0.25 in. (3.2 to 6.4 mm), with the sample dimensions suitable for preparing a minimum of five specimens for flexural testing as described in 8.1.4. Flexural properties after exposure to the chemical solutions should be based on the dimensions of the specimen after exposure.

7.2.2.1 For applications other than standard domestic sewerage, it is recommended that chemical resistance tests be conducted with actual samples of the fluid flowing in the pipe. These tests can also be accomplished by depositing CIPP test samples in the active pipe.

7.2.2.2 As required by the purchaser, additional chemical resistance requirements for the CIPP may be evaluated as described in 6.4 of Specification D 5813.

8. Recommended Inspection Practices

8.1 For each installation length designated by the purchaser in the purchase agreement, the preparation of CIPP samples is required from one or both of the following two methods:

8.1.1 The samples should be cut from a section of cured CIPP at an intermediate manhole or at the termination point that has been installed through a like diameter section of pipe or other tubular restraining means which has been held in place by a suitable heat sink, such as sandbags.

8.1.2 The sample should be fabricated from material taken from the fabric tube and the resin/catalyst system used, and cured in a clamped mold, placed in the downtube when heated circulated water is used, and in the silencer when steam is used. When the CIPP is constructed of oriented continuous or discontinuous fibers to enhance the physical properties of the CIPP, this method of sample preparation is recommended in order to allow testing in the axial (that is, along the length) and

TABLE 2	Minimum Chemical Resistance Requirements t	ior
	Domestic Sanitary Sewer Applications	

/	11
Chemical Solution	Concentration, %
Nitric acid	1
Sulfuric acid	5
ASTM Fuel C ^A	100
Vegetable oil ^ø	100
Detergent ^C	0.1
Soap ^č	0.1

^AIn accordance with Specification D 4814 ^BCottonseed, com, or mineral oil.

^CIn accordance with Test Method D 543.

Copyright by ASTM Int'l (all rights reserved);

Reproduction authorized per License Agreement with ALLAN CLARK (NU FLOW TECHNOLOGIES (2000) IN); Fri Feb 4 10:22:01 EST 2005

circumferential (that is, hoop) directions of the CIPP. This method is also recommended when large-diameter CIPP is installed that may otherwise not be prepared with a tubular restraint.

8.1.3 The CIPP samples for each of these cases should be large enough to provide a minimum of three specimens and a recommended five specimens for flexural testing and also for tensile testing for internal pressure applications. The flexural and tensile specimens should be prepared in a manner consistent with 8.3.1 of Specification D 5813. For flexural and tensile properties, the full wall thickness of the CIPP samples shall be tested. Any plastic coatings or other CIPP layers not included in the structural design of the CIPP may be carefully ground off of the specimens prior to testing. If the sample is irregular or distorted such that proper testing is inhibited, attempts shall be made to machine any wall thickness from the inside pipe face of the sample. Any machining of the outside pipe face of the sample shall be done carefully so as to minimize the removal of material from the outer structural wall of the sample. Individual specimens should be clearly marked for easy identification and retained until final disposition or CIPP acceptance, or both, has been given.

8.1.4 Short-Term Flexural (Bending) Properties-The initial tangent flexural modulus of elasticity and flexural stress should be measured for gravity and pressure pipe applications in accordance with Test Method D 790, Test Method I, Procedure A and should meet the requirements of Table 1 within the 16:1 length to depth constraints. For specimens greater than 0.5 in. (12.7 mm) in depth, the width-to-depth ratio of the specimen should be increased to a minimum of 1:1 and should not exceed 4:1. For samples prepared in accordance with 8.1.1, determine flexural properties in the axial direction where the length of the test specimen is cut along the longitudinal axis of the pipe. Special consideration should be given to the preparation of flexural specimens to ensure opposite sides are parallel and adjacent edges are perpendicular. Flexural specimens should be tested such that the inside pipe face is tested in tension and the outside pipe face is in compression.

8.1.4.1 Fiber-Reinforced CIPP Flexural Properties— Where the CIPP is reinforced with oriented continuous or discontinuous fibers to enhance the physical properties of the CIPP, specimens should be sampled in accordance with 8.1.2, and flexural properties should be determined in accordance with 8.1.3 along the longitudinal axis and circumferential axis of the installed CIPP.

8.1.5 Short-Term Tensile Properties—The tensile strength should be measured for pressure pipe applications in accordance with Test Method D 638. Specimens should be prepared in accordance with Types I, II, and III of Fig. 1 of Test Method D 638. Specimens greater than 0.55 in. (14 mm) thick should maintain all dimensions for a Type III specimen, except the thickness will be that of the CIPP sample obtained. The rate of specimen testing should be carried out in accordance with Table 1 of Test Method D 638. Specimens should be prepared in accordance with 8.1.1 and tested along the longitudinal axis of the installed CIPP.

8.1.5.1 Fiber-Reinforced CIPP Tensile Testing—Where the CIPP is reinforced with oriented continuous or discontinuous

fibers to enhance the physical properties of the CIPP, specimens should be sampled in accordance with 8.1.2 and tensile properties should be determined in accordance with Test Method D 3039 and tested along the longitudinal axis and circumferential axis of the installed CIPP.

8.1.6 CIPP Wall Thickness-The method of obtaining CIPP wall thickness measurements should be determined in a manner consistent with 8.1.2 of Specification D 5813. Thickness measurements should be made in accordance with Practice D 3567 for samples prepared in accordance with 8.1. Make a minimum of eight measurements at evenly spaced intervals around the circumference of the sample to ensure that minimum and maximum thicknesses have been determined. Deduct from the measured values the thickness of any plastic coatings or CIPP layers not included in the structural design of the CIPP. The average thickness should be calculated using all measured values and shall meet or exceed minimum design thickness as agreed upon between purchaser and seller. The minimum wall thickness at any point shall not be less than 87.5 % of the specified design thickness as agreed upon between purchaser and seller.

8.2 Gravity Pipe Leakage Testing-If required by the owner in the contract documents or purchase order, gravity pipes should be tested using an exfiltration test method where the CIPP is plugged at both ends and filled with water. This test should take place after the CIPP has cooled down to ambient temperature. This test is limited to pipe lengths with no service laterals and diameters of 36 in. or less. The allowable water exfiltration for any length of pipe between termination points should not exceed 50 U.S. gallons per inch of internal pipe diameter per mile per day, providing that all air has been bled from the line. During exfiltration testing, the maximum internal pipe pressure at the lowest end should not exceed 10 ft (3.0 m) of water or 4.3 psi (29.7 kPa), and the water level inside of the inversion standpipe should be 2 ft (0.6 m) higher than the top of the pipe or 2 ft (0.6 m) higher than groundwater level, whichever is greater. The leakage quantity should be gaged by the water level in a temporary standpipe placed in the upstream plug. The test should be conducted for a minimum of 1 h.

Note 4—It is impractical to test pipes above 36 in. diameter for leakage due to the technology available in the pipe rehabilitation industry. Post inspection of larger pipes will detect major leaks or blockages.

8.3 Pressure Pipe Testing—If required by the purchaser in the purchase agreement, pressure pipes should be subjected to a hydrostatic pressure test. A pressure and leakage test at twice the known working pressure or at the working pressure plus 50 psi, whichever is less, is recommended. The pressure should initially be held at the known working pressure for a period not less than 12 h, then increased to the test pressure for an additional period of 2 to 3 h to allow for stabilization of the CIPP. After this period, the pressure test will begin for a minimum of 1 h. The allowable leakage during the pressure test should be 20 U.S. gallons per inch of internal pipe diameter per mile per day, providing that all air has been evacuated from the line prior to testing and the CIPP has cooled down to ambient temperature.

Note 5—The allowable leakage for gravity and pressure pipe testing is a function of water loss at the end seals and trapped air in the pipe.

Copyright by ASTM Int'l (all rights reserved);

Reproduction authorized per License Agreement with ALLAN CLARK (NU FLOW TECHNOLOGIES (2000) IN); Fri Feb 4 10:22:01 EST 2005

🕮 F 1743 – 96 (2003)

8.4 Delamination Test—If required by the purchaser in the purchase agreement, a delamination test should be performed on each installation length specified. CIPP samples should be prepared in accordance with 8.1.2, except that a portion of the fabric tube material in the sample should be dry and isolated from the resin in order to separate tube layers for testing (consult the tube manufacturer for further information). Delamination testing should be in accordance with Test Method D 903 with the following exceptions:

8.4.1 The rate of travel of the power-actuated grip should be 1 in. (25 mm)/min.

8.4.2 Five test specimens should be tested for each installation specified.

8.4.3 The thickness of the test specimen should be minimized, but should be sufficient to adequately test delamination of nonhomogeneous CIPP layers.

8.5 The peel or stripping strength between any nonhomogeneous layers of the CIPP laminate should be a minimum of 10 lb/in. (178.60 g/mm) for typical CIPP applications. Note 6-The purchaser may designate the similar layers between which the delamination test will be conducted.

Note 7—For additional details on conducting the delamination test, contact the seller.

8.6 Inspection and Acceptance—The installation may be inspected visually if appropriate, or by closed-circuit television if visual inspection cannot be accomplished. Variations from true line and grade may be inherent because of the conditions of the original piping. No infiltration of groundwater should be observed. All service entrances should be accounted for and be unobstructed.

9. Keywords

9.1 cured-in-place pipe; installation—underground; plastic pipe—thermoset; rehabilitation; thermosetting resin pipe

APPENDIX

(Nonmandatory Information)

X1. DESIGN CONSIDERATIONS

X1.1 General Guidelines—The design thickness of the CIPP is a function of the resin, materials of construction of the fabric tube, and the condition of the existing pipe. In addition, depending on the condition of the pipe, the design thickness of

the CIPP may also be a function of groundwater, soil type, and influence of live loading surrounding the host pipe. For guidance relating to terminology of piping conditions and related design equations, see Appendix X1 of Practice F 1216.

ASTM International takes no position respecting the validity of any patent rights asserted in connection with any item mentioned in this standard. Users of this standard are expressly advised that determination of the validity of any such patent rights, and the risk of infringement of such rights, are entirely their own responsibility.

This standard is subject to revision at any time by the responsible technical committee and must be reviewed every five years and if not revised, either reapproved or withdrawn. Your comments are invited either for revision of this standard or for additional standards and should be addressed to ASTM International Headquarters. Your comments will receive careful consideration at a meeting of the responsible technical committee, which you may attend. If you feel that your comments have not received a fair hearing you should make your views known to the ASTM Committee on Standards, at the address shown below.

This standard is copyrighted by ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959, United States. Individual reprints (single or multiple copies) of this standard may be obtained by contacting ASTM at the above address or at 610-832-9585 (phone), 610-832-9555 (fax), or service@astm.org (e-mail); or through the ASTM website (www.astm.org).

Copyright by ASTM Int'l (all rights reserved);

7

Reproduction authorized per License Agreement with ALLAN CLARK (NU FLOW TECHNOLOGIES (2000) IN); Fri Feb 4 10:22:01 EST 2005

Amendment to ASTM F1743-96 Author: Doug Kleweno of DGK Technologies

Douglas Kleweno 25124 235th Way SE Maple Valley, WA 93038-5905

May 22, 2001

Whom it may concern:

I am writing this letter at the request of Mr. David Ratliff (Nu Flow Installer, Abilene, Texas) in order to provide clarification for ASTM F1743 "Standard Practice for Rehabilitation of Existing Pipelines and Conduits by Pulled-in-Place Installation of Cured-In-Place Thermosetting Resin Pipe (CIPP)" and similar pulled-in-place products. In my previous position I was the Technical Manager for InLiner USA CIPP products and am the author of ASTM F1743. I have also been involved in editing ASTM F1216 and ASTM D5813, which are also CIPP installation and material specifications, respectively.

When writing an ASTM specification it is necessary to provide enough minimum requirements so that the product can meet or exceed engineering and design criteria. However, ASTM specifications also must be generalized enough to accommodate the majority of products and processes that may want to reference it. F1743 was generally written for most CIPP applications where heated cures predominate in the market. There are many resin applications for CIPP and other products (boat building, automotive, heavy truck) where ambient cure resin formulations are common and used successfully. Technically speaking, an ambient cure formulation for CIPP does initiate at a temperature less that 180F, which is recommended in Section 5.2.3 or F1743.

More critical to CIPP and other applications is whether the product (CIPP in this case) meets the minimum initial structural property recommendations. The minimum properties for the CIPP were provided in Section 4.2.3 of ASTM F1743 and this is probably the most important aspect for the product to meet the requirements for external hydrostatic or soil loading that may surround the pipe. These minimum properties are the numbers by which the minimum design thickness is determined for the installed CIPP or part liner.

As a side note it is my experience that the curing strategy is chosen for handling and transportation purposes. Large liners for CIPP require long catalyzed stability so the product can be processed, transported, and installed. For short runs or tubes processed at a job site, it was common to use ambient or semi-ambient cure formulations to reduce the time at the job site and the associated inconvenience to the surrounding community.

I hope this has provided some additional clarification.

Doug Kleweno (423) 413-8529

August 24, 2005

TEST REPORT					
101 OS CA	790 FLOW TECHNOLOGIES 200 0 THORNTON ROAD SOUTH HAWA ON L1J 7E2 NADA 11: MR. BOB FOWLE				
Customer: 1P7 NU 101 OSF CAN) INC.	1P790 NU FLOW TECHNOLOGIES 2000 INC. 1010 THORNTON ROAD SOUTH OSHAWA ON L1J 7E2 CANADA Attn: MR. BOB FOWLE		
	iption:Nu Flow #2000 Pipe Lir	iing - Liner			
	AA - Annual Collection having your product tested by	NSF.			
Thank you for The enclosed be contacting	having your product tested by report details the result of the you in the near future if there	testing performed on a are any remaining iss	your product. Your program representative will ues concerning the status of this product. lestions pertaining to your product.		
Thank you for The enclosed be contacting Please do not Reviewer:	having your product tested by report details the result of the you in the near future if there hesitate to contact us if you h Ato C. Q. Q.	testing performed on are any remaining iss ave any immediate qu			
Thank you for The enclosed be contacting Please do not Reviewer: CC: Program:	having your product tested by report details the result of the you in the near future if there hesitate to contact us if you h <u>Ata A. </u>	testing performed on a are any remaining issi ave any immediate qu	estions pertaining to your product.		
Thank you for The enclosed be contacting Please do not Reviewer: CC: Program: Program Ri Region: PA Project: FI200508241202 This report shall	having your product tested by report details the result of the you in the near future if there hesitate to contact us if you h <u>Afa</u> <u>A</u> - <u>A</u> - <u>A</u> Atabek Ciechanowski - Manager, En- 010 - Plumbing and Related Prog ep: AMY CHOKSEY 01 - Domestic 224520	testing performed on f are any remaining issi ave any immediate qu pineering Laboratory rams	estions pertaining to your product.		

General Information

	DCC Number / Tracking ID PL0424	49		
	Family Code A			
	Material Type Epoxy			
	Monitor Code A			
	Performance Standard F1216			
	Performance Standard Year 2003			
	Product Identifier Part A Batch # 0	30904 Part B Bate	± # ∩40405_3	
	Sample Description Liner	50504, 1 tart 5 Balo	an # 040400_0	
	Trade Designation Nu Flow #2000	Pipe Lining		
ample Id:	S-0000161582			
escription:	Nu Flow #2000 Pipe Lining - Liner			
ampled Date:	05/19/2005			
leceived Date:	05/23/2005			
esting Paramet	er		Result	V. J. Units *
ngineering Lab				
	Leakage Test			
Initial wate			10	feet
Final wate	r column:		10	feet
Time:			60	minutes
Leakage r			0	g/in/day
	maximum leakage rate:		50	g/in/day
Actual lea				g/in/day
Flex Modulus	pe Leakage Test:		Pass	
	s conditioned for		40	hours
	s conditioned at		73	degrees F
Relative h			50	%
	erature Required	<u> </u>	73	degrees F
	erature Actual		73	degrees F
	crosshead speed		0.22	
Actual cro	sshead speed		0.22	in/min
Deflection			<5	%
Specimen	1		280000	psi
Specimen	2		315000	psi
Specimen	3		275000	psi
Specimen	4		242000	psi
Specimen	5		257000	psi
	Average Modulus (minimum)	2500	00 psi	
Actual Ave	erage Modulus		274000	psi
Flex Modu		PAS	s	
Flexural Stre				
	s conditioned for		40	hours
	s conditioned at		73	degrees F
Relative H			50	percent
Test Temp			73	degrees F
Cross Hea			0.22	in/min
<u> </u>	1 Flexural Strength		6280	psi
	O THE CAR AND A MARKED AND A			
Specimen	2 Flexural Strength 3 Flexural Strength		6480 6010	psi

FI20050824120213

J-00012414

Page 2 of 4

This report shall not be reproduced, except in its entirety, without the written approval of NSF. This report does not represent NSF Certification or authorization to use the NSF Mark. Authorization to use the NSF Mark is limited to products appearing in the Company's Official NSF Listing, (www.nsf.org). The results relate only to those items tested.

Original reports bear a light blue NSF Mark and border.

÷

esting Parameter	Result	Units - · · ·
ngineering Lab (Cont'd)		
Specimen 5 Flexural Strength	5820	psi
Average Flexural Strength	5960	psi
Required Flexural Strength	4500	psi
Flexural Strength Test	Pass	
Strength, Tensile		
Specimens conditioned for	40	hours
Specimens conditioned at	73	degrees F
Relative humidity	50	%
Test Temperature	73	degrees F
Actual Crosshead Speed	0.2	in/min.
Required Crosshead Speed	0.2	in/min.
Specimen 1: Tensile Strength	3930	psi
Specimen 2: Tensile Strength	4540	psi
Specimen 3: Tensile Strength	4010	psi
Specimen 4: Tensile Strength	3690	psi
Specimen 5: Tensile Strength	3920	psi
Req'd Average Tensile Strength (minimum)	3000	
Actual Average Tensile Strength	4020	psi
Tensile Strength Test	PASS	
Specimen Fabrication	· · · · · · · · · · · · · · · · · · ·	
Specimen Fabrication	COMPLETE	
Time	1	hours
Technician	3356	

J-00012414

Page 3 of 4

This report shall not be reproduced, except in its entirety, without the written approval of NSF. This report does not represent NSF Certification or authorization to use the NSF Mark. Authorization to use the NSF Mark is limited to products appearing in the Company's Official NSF Listing, (www.nsf.org). The results relate only to those items tested.

Page: 3

	ld	Address
All work performed at:	→ NSF_AA	NSF International
		789 Dixboro Road
		Ann Arbor MI 48105-0140
		USA

References to Testing Procedures;

P4316 Text Modification

NSF Reference	Parameter / Test Description			

P3084	Gravity Pipe Leakage Test			
P3122	Flex Modulus			
P3123	Flexural Strength Test			
P3127	Strength, Tensile			
P3172	Specimen Fabrication			

F(200	508241	120213
Final_	Std	

This report shall not be reproduced, except in its entirety, without the written approval of NSF. This report does not represent NSF Certification or authorization to use the NSF Mark. Authorization to use the NSF Mark is limited to products appearing in the Company's Official NSF Listing, (www.nsf.org). The results relate only to those items tested.

Original reports hear a light blue NSF Mark and border.

Page 4 of 4

NU FLOW TECHNOLOGIES 2000 INC. 1010 Thornton Road South Oshawa, Ontario L1J 7E2

Laboratory Report

002/002

Page:

Attention	Client's Order Number	Date	Report Number	
Sinan Omari	9282	16 March 2007	07-845	
Client's Material / Product Desc	ription Date S	ample Received	Material / Product Specification	
(1) Sample	06 N	March 2007	ASTM D5813-04	
Test Performed		Resul	t	
1. <u>Tangent Flexural Modulus</u>				
(ASTM D790)				
Crosshead speed: 0.05	5"/min Sampl			
 1000 lbf Load cell 	1	38440		
 2 inch support span 	2	42090	250.000 DSI	
• L/D = 16	3	30460	INIINIMUM	
 Specimen Geometry: 	4	42540		
1/8" x 1/2" x 4"	5			
 5 specimens tested 	Avera	ige 38650	<i>,</i> 0	
Units: psi				
2. Flexural Strength	Sampl	e #_		
(ASTM D790)	1	6 070		
 5 specimens tested 	2	6 670		
Units: psi	3	5 400	4,500 psi Minimum	
	4	6 200		
	<u>5</u>			
7	Avera	age 6 1 6 0		
3. Wall Thickness	Side	A Side B		
a Haltan and	3.5			
Units: mm	3.6			
 Four measurements tal each side 	sen on 3.6	7 3.50		
each side	3.7	9 3.74		

Telephone (905) 673-9899

Address 2421 Drew Road Mississauga, Ontario Canada L55 1A1

Facsimile (905) 673-8394

E-mail aahlawat@acuren.com

Web www.acuren.com

(0

Corrine Dimnik, B.Sc. Certified Inspector.

() The in whole or in part, of th name of Acuren shall r or damage

Dr. Erhan Ulvan, Ph. D, P. Eng.,

Laboratory Manager.

whole or in part, of the test or substance of this information shall reare only to the name of Acuren shall not be used in any manner in connection with the take, offenin or damage resulting directly or and product error, negligence or ensist report date. (v) Work which may progress beyond thirty-one (31) days in durati (v) Any test soutonuced ha an approved subcontractor are highlighted above (1) (v) Any test soutonuced has an approved subcontractor are highlighted above (1) and the source of the antiproved subcontractor are highlighted above (1) and the source of the antiproved subcontractor are highlighted above (1) and the source of the antiproved subcontractor are highlighted above (1) and the source of the antiproved subcontractor are highlighted above (1) and the source of the antiproved subcontractor are highlighted above (1) and the source of the antiproved subcontractor are highlighted above (1) and the source of the antiproved subcontractor are highlighted above (1) and the source of the antiproved subcontractor are highlighted above (1) and the source of the antiproved subcontractor are highlighted above (1) and the source of the antiproved subcontractor are highlighted above (1) and the source of the antiproved subcontractor are highlighted above (1) and the source of the antiproved subcontractor are highlighted above (1) and the source of the antiproved subcontractor are highlighted above (1) and the source of the antiproved subcontractor are highlighted above (1) and the source of the antiproved subcontractor are highlighted above (1) and the source of the antiproved subcontractor are highlighted above (1) and the source of the antiproved subcontractor are highlighted above (1) and the source of the antiproved subcontractor are highlighted above (1) and the source of with the sale, offering or (m) (iv) Un e (")

Flow Comparisons

Comparison between a new pipe and a rehabilitated pipe

Diam	leter	Hazen Williams	Flow for new pipe	Thickness of Liner (mm)	Resulting internal	Hazen Williams	Flow for rehabilitated	% Loss
(m)	(in)	Coefficient (C)	(m ³ /s)		diameter (m)	coefficient (C)	pipe (m ³ /s)	
0.15	6	140	0.27	2	0.146	140	0.25	-6.86
0.20	8	140	0.57	2	0.196	140	0.54	-5.17
0.30	10	140	1.02	2	0.246	140	0.98	-4.15
0.40	12	140	1.65	2.5	0.295	140	1.57	-4.32

Comparison between old pipe and a rehabilitated pipe

Old F Diam	· 1		Flow for old pipe	Thickness of Liner (mm)	Old Pipe diameter (m)	Hazen Williams coefficient (C)	Flow for rehabilitated pipe	% Increase
(m)			(m ³ /s)	,		(-)	(m ³ /s)	
0.13	<u> </u>	60	0.08	2	0.146	140	0.25	216.63
0.18	8	60	0.18	2	0.196	140	0.54	191.91
0.23	10	60	0.35	2	0.246	140	0.98	178.48
0.27	12	60	0.53	2.5	0.295	140	1.57	194.52

Date Proposal Submitted	4/1/2010	Section	1102.2
Chapter	11	TAC Recommendation	Pending Review
Affects HVHZ	No	Commission Action	Pending Review
Proponent	Allen Johnson	General Comments	No
Attachments	Yes	Alternate Language	No

Related Modifications

702.1, 702.2, 702.3, 1102.1, 1102.3, 1102.4

Summary of Modification

Modify the current building materials list to include Cure-In Place (CIPP) Thermosetting Resin Conduit Liner that meets ASTM F-1743, ASTM F-1216, ASTM D790, ASTM D638 and ASTM D543. in sections 702.1,702.2, 702.3, 1102.1, 1102.2, 1102.3 and 1102.4 for building drains and building sewer pipes.

Rationale

CIPP liners are an alternative to traditional pipe replacement that increases the flow charicteristics of the pipe.

Fiscal Impact Statement

Impact to local entity relative to enforcement of code

There are no additional costs relative to enforcement compared to traditional replacement.

Impact to building and property owners relative to cost of compliance with code

There is a significant cost savings to building and property owners as well as reducing potentially hazardous materials left undisturbed as compared to traditional pipe replacement CIPP liners are seamless and jointless, reducing the number of potential failures.

Impact to industry relative to the cost of compliance with code

There is no impact to the industry relative to the cost of compliance with code.

Requirements

Has a reasonable and substantial connection with the health, safety, and welfare of the general public

CIPP lining eliminates the destruction of landscapes and property as well as the health dangers associated with removing of sewer pipes in need of repair.

Strengthens or improves the code, and provides equivalent or better products, methods, or systems of construction

CIPP liners provide a repair solution that allows drain, waste and sewer pipes to be repaired without the digging and destruction required for traditional pipe repairs or replacement.

Does not discriminate against materials, products, methods, or systems of construction of demonstrated capabilities CIPP lining can be installed in any type of host pipe used for Building drains and Building sewer pipes for residential, commercial

and industrial applications.

Does not degrade the effectiveness of the code

CIPP lining does not degrade the effectiveness of the code.

SECTION 702 MATERIALS

P4318 Text Modification

702.1 Above-ground sanitary drainage and vent pipe. Above-ground soil, waste and vent pipe shall conform to one of the standards listed in Table 702.1.

TABLE 702.1 ABOVE-GROUND DRAINAGE AND VENT PIPE

MATERIAL	STANDARD
Acrylonitrile butadiene styrene (ABS) plastic pipe in IPS diameters, including Schedule 40, DR 22 (PS 200) and DR 24 (PS 140); with a solid, cellular core or composite wall	ASTM D 2661; ASTM F 628; ASTM F 1488; CSA B181.1
Brass pipe	ASTM B 43
Cast-iron pipe	ASTM A 74; ASTM A 888; CISPI 301
Copper or copper-alloy pipe	ASTM B 42; ASTM B 302
Copper or copper-alloy tubing (Type K, L, M or DWV)	ASTM B 75; ASTM B 88; ASTM B 251; ASTM B 306
Galvanized steel pipe	ASTM A 53
Glass pipe	ASTM C 1053
Polyolefin pipe	ASTM F 1412; CAN/CSA B181.3
Polyvinyl chloride (PVC) plastic pipe in IPS diameters, including schedule 40, DR 22 (PS 200), and DR 24 (PS 140); with a solid, cellular core or composite wall	ASTM D 2665; ASTM F 891; ASTM F 1488; CSA B181.2
Polyvinyl chloride (PVC) plastic pipe with a 3.25-inch O.D. and a solid, cellular core or composite wall	ASTM D 2949, ASTM F 1488
Polyvinylidene fluoride (PVDF) plastic pipe	ASTM F 1673; CAN/CSA B181.3
Stainless steel drainage systems, Types 304 and 316L	ASME A112.
Cured-In Place Thermosetting Resin Conduit Liner (CIPP)	<u>ASTM F1743, ASTM F1216, ASTM</u> <u>D790, ASTM D638, ASTM D543</u>

Designation: F 1743 - 96 (Reapproved 2003)

An American National Standard

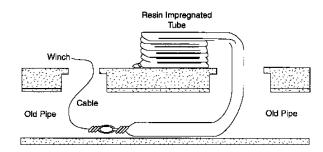
Standard Practice for Rehabilitation of Existing Pipelines and Conduits by Pulledin-Place Installation of Cured-in-Place Thermosetting Resin Pipe (CIPP)¹

This standard is issued under the fixed designation F 1743; the number immediately following the designation indicates the year of original adoption or, in the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. A superscript epsilon (ϵ) indicates an editorial change since the last revision or reapproval.

1. Scope

1.1 This practice describes the procedures for the reconstruction of pipelines and conduits (4 to 96 in. (10 to 244 cm) diameter) by the pulled-in-place installation of a resinimpregnated, flexible fabric tube into an existing conduit and secondarily inflated through the inversion of a calibration hose by the use of a hydrostatic head or air pressure (see Fig. 1). The resin is cured by circulating hot water or by the introduction of controlled steam into the tube. When cured, the finished cured-in-place pipe will be continuous and tight fitting. This reconstruction process may be used in a variety of gravity and pressure applications such as sanitary sewers, storm sewers, process piping, electrical conduits, and ventilation systems.

1.2 The values stated in inch-pound units are to be regarded as the standard. The values given in parentheses are for informational purposes only.


Note 1—There are no ISO standards covering the primary subject matter of this practice.

1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

2. Referenced Documents

2.1 ASTM Standards:

- D 543 Test Method of Resistance of Plastics to Chemical $\ensuremath{\mathsf{Reagents}}^2$
- D 638 Test Method for Tensile Properties of Plastics²
- D 790 Test Methods for Flexural Properties of Unreinforced and Reinforced Plastics and Electrical Insulating Materials²
- D 903 Test Method for Peel or Stripping Strength of Adhesive Bonds^3

Step 1 - Pull resin-impregnated tube into existing pipe.

Step 2 - Calibration hose inversion

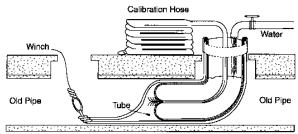


FIG. 1 Cured-in-Place Pipe Installation Methods

- D 1600 Terminology for Abbreviated Terms Relating to $\ensuremath{\text{Plastics}}^2$
- D 1682 Test Method for Breaking Load and Elongation of Textile ${\rm Fabrics}^4$
- D 3039/D3039M Test Method for Tensile Properties of Polymer Matrix Composite Materials⁵

⁴ Discontinued: See 1991 Annual Book of ASTM Standards, Vol 07.01. ⁵ Annual Book of ASTM Standards, Vol 15.03.

Copyright © ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959, United States.

1

Copyright by ASTM Int'l (all rights reserved); Reproduction authorized per License Agreement with ALLAN CLARK (NU FLOW TECHNOLOGIES (2000) IN); Fri Feb 4 10:22:01 EST 2005

2010 Triennial

¹ This practice is under the jurisdiction of ASTM Committee F-17 on Plastic Piping Systems and is the direct responsibility of Subcommittee F17.67 on Trenchless Plastic Pipeline Technology.

Current edition approved Feb. 10, 2003. Published April 2003. Last previous edition approved in 1996 as F1743-96.

² Annual Book of ASTM Standards, Vol 08.01.

³ Annual Book of ASTM Standards, Vol 15.06.

- D 3567 Practice for Determining Dimensions of Reinforced Thermosetting Resin Pipe (RTRP) and Fittings⁶
- D 4814 Specification for Automotive Spark-Ignition Engine Fuel⁷
- D 5813 Specification for Cured-in-Place Thermosetting Resin Sewer Pipe⁶
- F 412 Terminology Relating to Plastic Piping Systems⁶
- F 1216 Practice for Rehabilitation of Existing Pipelines and Conduits by the Inversion and Curing of a Resin-Impregnated Tube⁶
- 2.2 AWWA Standard:
- M28 Manual on Cleaning and Lining Water Mains⁸
- 2.3 NASSCO Standard:
- Recommended Specifications for Sewer Collection System Rehabilitation⁵

Note 2-An ASTM specification for cured-in-place pipe materials appropriate for use in this practice is under preparation and will be referenced in this practice when published.

3. Terminology

3.1 General-Definitions are in accordance with Terminology F 412. Abbreviations are in accordance with Terminology D 1600, unless otherwise indicated.

3.2 Definitions of Terms Specific to This Standard:

3.2.1 calibration hose-an impermeable bladder which is inverted within the resin-impregnated fabric tube by hydrostatic head or air pressure and may optionally be removed or remain in place as a permanent part of the installed cured-inplace pipe as described in 5.2.2.

3.2.2 cured-in-place pipe (CIPP)-a hollow cylinder consisting of a fabric tube with cured (cross-linked) thermosetting resin. Interior or exterior plastic coatings, or both, may be included. The CIPP is formed within an existing pipe and takes the shape of and fits tightly to the pipe.

3.2.3 delamination-separation of layers of the CIPP.

3.2.4 dry spot—an area of fabric of the finished CIPP which is deficient or devoid of resin.

3.2.5 fabric tube-flexible needled felt, or equivalent, woven or nonwoven material(s), or both, formed into a tubular shape which during the installation process is saturated with resin and holds the resin in place during the installation and curing process.

3.2.6 inversion-the process of turning the calibration hose inside out by the use of water pressure or air pressure.

3.2.7 lift-a portion of the CIPP that is a departure from the existing conduit wall forming a section of reverse curvature in the CIPP.

4. Significance and Use

4.1 This practice is for use by designers and specifiers, regulatory agencies, owners, and inspection organizations who are involved in the rehabilitation of conduits through the use of a resin-impregnated fabric tube pulled-in-place through an existing conduit and secondarily inflated through the inversion of a calibration hose. Modifications may be required for specific job conditions.

5. Recommended Materials and Manufacture

5.1 General-The resins, fabric tube, tube coatings, or other materials, such as the permanent calibration hose when combined as a composite structure, shall produce CIPP that meets the requirements of this specification.

5.2 CIPP Wall Composition-The wall shall consist of a plastic coated fabric tube filled with a thermosetting (crosslinked) resin, and if used, a filler.

5.2.1 Fabric Tube-The fabric tube should consist of one or more layers of flexible needled felt, or equivalent, woven or nonwoven material(s), or both, capable of carrying resin, withstanding installation pressures, and curing temperatures. The material(s) of construction should be able to stretch to fit irregular pipe sections and negotiate bends. Longitudinal and circumferential joints between multiple layers of fabric should be staggered so as not to overlap. The outside layer of the fabric tube should have an impermeable flexible coating(s) whose function is to contain the resin during and after fabric tube impregnation. The outer coating(s) must facilitate monitoring of resin saturation of the material(s) of construction of the fabric tube. The fabric tube should be fabricated to a size that, when installed, will tightly fit the internal circumference and the length of the original conduit. Allowance should be made for circumferential and longitudinal stretching of the fabric tube during installation. As required, the fabric tube should meet minimum tensile strength requirements in the longitudinal and transverse directions as specified in 7.1. All the material(s) of construction for the fabric tube should be compatible with the resin system used.

5.2.2 Calibration Hose:

5.2.2.1 Removable Calibration Hose-The removable calibration hose should consist of an impermeable plastic, or impermeable plastic coating(s) on flexible woven or nonwoven material(s), or both, that do not absorb resin and are capable of being removed from the CIPP.

5.2.2.2 Permanent Calibration Hose-The permanent calibration hose should consist of an impermeable plastic coating on a flexible needled felt or equivalent woven or nonwoven material(s), or both, that are capable of absorbing resin and are of a thickness to become fully saturated with resin. The calibration hose should be translucent to facilitate postinstallation inspection. The calibration hose should be fabricated to a size that, when installed, will tightly fit the internal circumference and the length of the resin saturated fabric tube. Once inverted, the calibration hose becomes part of the fabric tube, and once properly cured, should bond permanently with the fabric tube. The properties of the calibration hose should meet minimum tensile strength requirements in the longitudinal and transverse directions as specified in 7.1. All the material(s) of construction for the calibration hose should be compatible with the resin system used.

5.2.3 Resin-A chemically resistant isophthalic based polyester, or vinyl ester thermoset resin and catalyst system or an

Copyright by ASTM Int'l (all rights reserved);

2

Reproduction authorized per License Agreement with ALLAN CLARK (NU FLOW TECHNOLOGIES (2000) IN); Fri Feb 4 10:22:01 EST 2005

⁶ Annual Book of ASTM Standards, Vol 08.04.

Annual Book of ASTM Standards, Vol 05.03

⁸ Available from the American Water Works Association, 6666 W. Quincey Ave., Denver, CO 80235.

Available from the National Association of Sewer Service Companies, 101 Wymore Rd., Suite 501, Altamonte, FL 32714.

epoxy resin and hardener that is compatible with the installation process should be used. The resin should be able to cure in the presence of water and the initiation temperature for cure should be less than 180°F (82.2°C). The cured resin/fabric tube system, with or without the calibration hose, shall be expected to have as a minimum the initial structural properties given in Table 1. These physical properties should be determined in accordance with Section 8. The cured resin/fabric tube system, with or without the calibration hose, should meet the minimum chemical resistance requirements as specified in 7.2.

6. Installation Recommendations

6.1 Cleaning and Pre-Inspection:

6.1.1 Prior to entering access areas, such as manholes, and performing inspection or cleaning operations, an evaluation of the atmosphere to determine the presence of toxic or flammable vapors or lack of oxygen must be undertaken in accordance with local, state, or federal safety regulations.

6.1.2 Cleaning of Pipeline—All internal debris should be removed from the original pipeline. Gravity pipes should be cleaned with hydraulically powered equipment, high-velocity jet cleaners, or mechanically powered equipment in accordance with NASSCO Recommended Specifications for Sewer Collection System Rehabilitation. Pressure pipelines should be cleaned with cable attached devices or fluid propelled devices in accordance with AWWA M28.

6.1.3 Inspection of Pipelines—Inspection of pipelines should be performed by experienced personnel trained in locating breaks, obstacles, and service connections by closedcircuit television or man entry. The interior of the pipeline should be carefully inspected to determine the location of any conditions that may prevent proper installation of the impregnated tube, such as protruding service taps, collapsed or crushed pipe, and reductions in the cross-sectional area of more than 40 %. These conditions should be noted so that they can be corrected.

6.1.4 *Line Obstructions*—The original pipeline should be clear of obstructions such as solids, dropped joints, protruding service connections, crushed or collapsed pipe, and reductions in the cross-sectional area of more than 40 % that may hinder or prevent the installation of the resin-impregnated fabric tube. If inspection reveals an obstruction that cannot be removed by conventional sewer-cleaning equipment, then a point-repair excavation should be made to uncover and remove or repair the obstruction.

6.2 *Resin Impregnation*—The fabric tube should be totally impregnated with resin (wet-out) and run through a set of rollers separated by a space, calibrated under controlled conditions to ensure proper distribution of resin. The volume of

TABLE 1	CIPP	Initial	Structural	Pro	perties ⁴
IADEE I		mmuuu	onacianar		pernea

···				
Property	Test Method -	Minimum Value		
Flopeity	Test Method -	psi	(MPa)	
Flexural strength	D 790	4 500	(31)	
Flexural modulus	D 790	250 000	(1724)	
Tensile strength (for pressure pipes only)	D 638	3 000	(21)	

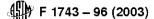
^AThe values in Table 1 are for field inspection. The purchaser should consult the manufacturer for the long-term structural properties.

resin used should be sufficient to fully saturate all the voids of the fabric tube material, as well as all resin-absorbing material of the calibration hose at nominal thickness and diameter. The volume should be adjusted by adding 3 to 15 % excess resin to allow for the change in resin volume due to polymerization, the change in resin volume due to thermal expansion or contraction, and resin migration through the perforations of the fabric tube and out onto the host pipe.

6.3 *Bypassing*—If bypassing of the flow is required around the sections of pipe designated for reconstruction, the bypass should be made by plugging the line at a point upstream of the pipe to be reconstructed and pumping the flow to a downstream point or adjacent system. The pump and bypass lines should be of adequate capacity and size to handle the flow. Services within this reach will be temporarily out of service.

6.3.1 Public advisory services shall notify all parties whose service laterals will be out of commission and advise against water usage until the main line is back in service.

6.4 Installation Methods:


6.4.1 Perforation of Resin-Impregnated Tube—Prior to pulling the resin-impregnated fabric tube in place, the outer impermeable plastic coating may optionally be perforated. When the resin-impregnated fabric tube is perforated, this should allow resin to be forced through the perforations and out against the existing conduit by the force of the hydrostatic head or air pressure against the inner wall of the calibration hose. The perforation should be done after fabric tube impregnation with a perforating roller device at the point of manufacture or at the jobsite. Perforations should be made on both sides of the lay-flat fabric tube covering the full circumference with a spacing no less than 1.5 in. (38.1 mm) apart. Perforating slits should be a minimum of 0.25 in. (6.4 mm) long.

6.4.2 Pulling Resin-Impregnated Tube into Position-The wet-out fabric tube should be pulled into place using a power winch. The saturated fabric tube should be pulled through an existing manhole or other approved access to fully extend to the next designated manhole or termination point. Care should be exercised not to damage the tube as a result of friction during pull-in, especially where curvilinear alignments, multilinear alignments, multiple offsets, protruding services, and other friction-producing host pipe conditions are present. Once the fabric tube is in place, it should be attached to a vertical standpipe so that the calibration hose can invert into the center of the resin-impregnated fabric tube. The vertical standpipe should be of sufficient height of water head to hold the fabric tube tight to the existing pipe wall, producing dimples at side connections. A device such as a dynamometer or load cell should be provided on the winch or cable to monitor the pulling force. Measure the overall elongation of the fabric tube after pull-in completion. The acceptable longitudinal elongation shall not be more than 5 % of the overall length measured after the calibration hose has been installed, or exceed the recommended pulling force.

6.4.3 Hydrostatic Head Calibration Hose Inversion—The calibration hose should be inserted into the vertical inversion standpipe, with the impermeable plastic membrane side out. At the lower end of the inversion standpipe, the calibration hose should be turned inside out and attached to the standpipe so

3

Copyright by ASTM Int'l (all rights reserved); Reproduction authorized per License Agreement with ALLAN CLARK (NU FLOW TECHNOLOGIES (2000) IN); Fri Feb 4 10:22:01 EST 2005

that a leakproof seal is created. The resin-impregnated fabric tube should also be attached to the standpipe so that the calibration hose can invert into the center of the resinimpregnated tube. The inversion head should be adjusted to be of sufficient height of water head to cause the calibration hose to invert from the initial point of inversion to the point of termination and hold the resin-impregnated fabric tube tight to the pipe wall, producing dimples at side connections. Care should be taken during the inversion so as not to overstress the felt fiber. At the request of the purchaser, the fabric tube manufacturer should provide information on the maximum allowable axial and longitudinal tensile stress for the fabric tube.

6.4.3.1 An alternative method of installation is top inversion. In this case, the calibration hose and resin-impregnated fabric tube are attached to a top ring. In this case, the tube itself forms the standpipe for generation of the hydrostatic head. Other methods of installation are also available and should be submitted for acceptance by the purchaser.

6.4.4 Using Air Pressure-The resin-impregnated fabric tube should be perforated as described in 6.4.1. Once perforated, the wet-out fabric tube should be pulled into place using a power winch as described in 6.4.2. The calibration hose should be inserted through the guide chute or tube of the pressure containment device in which the calibration hose has been loaded, with the impermeable plastic membrane side out. At the end of the guide chute, the calibration hose should be turned inside out and attached so that a leakproof seal is created. The resin-impregnated tube should also be attached to the guide chute so that the calibration hose can invert into the center of the resin-impregnated tube. The inversion air pressure should be adjusted to be of sufficient pressure to cause the calibration hose to invert from point of inversion to point of termination and hold the resin saturated fabric tube tight to the pipe wall, producing dimples at side connections. Care should be taken during the inversion so as not to overstress the woven and nonwoven materials. Take suitable precautions to eliminate hazards to personnel in the proximity of the construction when pressurized air is being used.

6.5 Lubricant During Installation—The use of a lubricant during installation is recommended to reduce friction during inversion. This lubricant should be poured into the fluid in the standpipe in order to coat the calibration hose during inversion. When air is used to invert the calibration hose, the lubricant should be applied directly to the calibration hose. The lubricant used should be a nontoxic, oil-based product that has no detrimental effects on the tube or boiler and pump system, and will not adversely affect the fluid to be transported.

6.6 Curing:

6.6.1 Using Circulating Heated Water—After installation is completed, suitable heat source and water recirculation equipment are required to circulate heated water throughout the section to uniformly raise the water temperature above the temperature required to effect a cure of the resin. The water temperature in the line during the cure period should be as recommended by the resin manufacturer or seller.

6.6.1.1 The heat source should be fitted with suitable monitors to measure the temperature of the incoming and

outgoing water supply. Temperature sensors should also be placed between the resin-impregnated tube and the host pipe invert at both termination points to monitor the temperatures during cure.

6.6.1.2 Initial cure will occur during temperature heat-up and is completed when exposed portions of the CIPP appear to be hard and sound and the remote temperature sensor indicates that the temperature is of a magnitude to realize an exotherm or cure in the resin. After initial cure is reached, the temperature should be raised to the post-cure temperature and held there for a period recommended by the resin manufacturer or seller. During post-cure, the recirculation of the water and cycling of the boiler to maintain the temperature continues. The curing of the CIPP must take into account the existing pipe material, the resin system, and ground conditions (temperature, moisture level, and thermal conductivity of soil).

6.6.2 Using Steam—After installation is completed, suitable steam-generating equipment is required to distribute steam throughout the pipe. The equipment should be capable of delivering steam throughout the section to uniformly raise the temperature within the pipe above the temperature required to effect a cure of the resin. The temperature in the line during the cure period should be as recommended by the resin manufacturer or seller.

6.6.2.1 The steam-generating equipment should be fitted with a suitable monitor to measure the temperature of the outgoing steam. Temperature sensors should also be placed between the resin-impregnated tube and the host pipe invert at both termination points to monitor the temperatures during cure.

6.6.2.2 Initial cure will occur during temperature heat-up and is completed when exposed portions of the new pipe appear to be hard and sound and the remote temperature sensor indicates that the temperature is of a magnitude to realize an exotherm or cure in the resin. After initial cure is reached, the temperature should be raised to the post-cure temperature and held there for a period recommended by the resin manufacturer or seller, during which time the distribution and control of steam to maintain the temperature continues. The curing of the CIPP must take into account the existing pipe material, the resin system, and ground conditions (temperature, moisture level, and thermal conductivity of soil).

6.6.3 *Required Pressures*—As required by the purchase agreement, the estimated maximum and minimum pressure required to hold the flexible tube tight against the existing conduit during the curing process should be provided by the seller and shall be increased to include consideration of external ground water, if present. Once the cure has started and dimpling for laterals is completed, the required pressures should be maintained until the cure has been completed. For water or steam, the pressure should be maintained within the estimated maximum and minimum pressure during the curing process. If the steam pressure or hydrostatic head drops below the recommended minimum during the cure, the CIPP should be inspected for lifts or delaminations and evaluated for its ability to fully meet the applicable requirements of 6.8 and Section 8.

6.7 Cool-Down:

Copyright by ASTM Int'l (all rights reserved);

Reproduction authorized per License Agreement with ALLAN CLARK (NU FLOW TECHNOLOGIES (2000) IN); Fri Feb 4 10:22:01 EST 2005

P4318 Text Modification

6.7.1 Using Cool Water after Heated Water Cure—The new CIPP should be cooled to a temperature below 100°F (38°C) before relieving the static head in the inversion standpipe. Cool-down may be accomplished by the introduction of cool water into the inversion standpipe to replace water being drained from a small hole made in the downstream end. Take care to cool down the CIPP in a controlled manner, as recommended by the resin manufacturer or the seller. Care should be taken to release the static head so that a vacuum will not be developed that could damage the newly installed CIPP.

6.7.2 Using Cool Water after Steam Cure—The new CIPP should be cooled to a temperature below 100°F (38°C) before relieving the internal pressure within the section. Cool-down may be accomplished by the introduction of cool water into the section to replace the mixture of air and steam being drained from a small hole made in the downstream end. Take care to cool the CIPP in a controlled manner as recommended by the resin manufacturer or the seller. Care should be taken to release the air pressure so that a vacuum will not be developed that could damage the newly installed CIPP.

6.8 Workmanship—The finished CIPP should be continuous over the entire length of an installation and be free of dry spots, lifts, and delaminations. If these conditions are present, the CIPP will be evaluated for its ability to meet the applicable requirements of Section 8. Where the CIPP does not meet the requirements of Section 8 or specifically stated requirements of the purchase agreement, or both, the affected portions of CIPP will be removed and replaced with an equivalent repair.

6.8.1 If the CIPP does not fit tightly against the original pipe at its termination point(s), the full circumference of the CIPP exiting the existing host pipe or conduit should be sealed by filling with a resin mixture compatible with the CIPP.

6.9 Service Connections—After the new CIPP has been installed, the existing active (or inactive) service connections should be reinstated. This should generally be done without excavation, and in the case of non-man entry pipes, from the interior of the pipeline by means of a television camera and a remote-control cutting device. Service connections shall be reinstated to at least 90 % of the original area as it enters the host pipe or conduit.

Note 3—In many cases, a seal is provided where the formed CIPP dimples at service connections. However, this practice should not be construed to provide a 100 % watertight seal at all service connections. If total elimination of infiltration and inflow is desired, other means, which are beyond the scope of this practice, may be necessary to seal service connections and to rehabilitate service lines and manholes.

7. Material Requirements

7.1 Fabric Tube Strength—If required by the purchaser in the purchase agreement, the fabric tube, and seam (if applicable) as a quality control test, when tested in accordance with Test Method D 1682 shall have a minimum tensile strength of 750 psi (5 MPa) in both the longitudinal and transverse directions.

7.2 Chemical Resistance:

7.2.1 Chemical Resistance Requirements—The cured resin/ fabric tube matrix, with or without the calibration hose, shall be evaluated in a laminate form for qualification testing of long-term chemical exposure to a variety of chemical effluents and should be evaluated in a manner consistent with 6.4.1 of Specification D 5813. The specimens shall be capable of exposure to the solutions in Table 2 at a temperature of $73.4 \pm 3.6^{\circ}$ F (23 \pm 2°C), with a percentage retention of flexural modulus of elasticity of at least 80% after one year exposure. Flexural properties, after exposure to the chemical solution(s), shall be based on dimensions of the specimens after exposure.

7.2.2 Chemical Resistance Procedures—The CIPP laminates should be constructed of identical fabric and resin components that will be used for anticipated in-field installations. The cured resin/fabric tube laminates, with or without the calibration hose should be exposed to the chemical agents in a manner consistent with Test Method D 543. The edges of the test coupons should be left exposed and not treated with resin, unless otherwise specified by the purchaser. The specimen thicknesses should be in the range of 0.125 to 0.25 in. (3.2 to 6.4 mm), with the sample dimensions suitable for preparing a minimum of five specimens for flexural testing as described in 8.1.4. Flexural properties after exposure to the chemical solutions should be based on the dimensions of the specimen after exposure.

7.2.2.1 For applications other than standard domestic sewerage, it is recommended that chemical resistance tests be conducted with actual samples of the fluid flowing in the pipe. These tests can also be accomplished by depositing CIPP test samples in the active pipe.

7.2.2.2 As required by the purchaser, additional chemical resistance requirements for the CIPP may be evaluated as described in 6.4 of Specification D 5813.

8. Recommended Inspection Practices

8.1 For each installation length designated by the purchaser in the purchase agreement, the preparation of CIPP samples is required from one or both of the following two methods:

8.1.1 The samples should be cut from a section of cured CIPP at an intermediate manhole or at the termination point that has been installed through a like diameter section of pipe or other tubular restraining means which has been held in place by a suitable heat sink, such as sandbags.

8.1.2 The sample should be fabricated from material taken from the fabric tube and the resin/catalyst system used, and cured in a clamped mold, placed in the downtube when heated circulated water is used, and in the silencer when steam is used. When the CIPP is constructed of oriented continuous or discontinuous fibers to enhance the physical properties of the CIPP, this method of sample preparation is recommended in order to allow testing in the axial (that is, along the length) and

TABLE 2	Minimum Chemical Resistance Requirements t	ior
	Domestic Sanitary Sewer Applications	

/	11
Chemical Solution	Concentration, %
Nitric acid	1
Sulfuric acid	5
ASTM Fuel C ^A	100
Vegetable oil ^ø	100
Detergent ^C	0.1
Soap ^č	0.1

^AIn accordance with Specification D 4814 ^BCottonseed, com, or mineral oil.

^CIn accordance with Test Method D 543.

Copyright by ASTM Int'l (all rights reserved);

Reproduction authorized per License Agreement with ALLAN CLARK (NU FLOW TECHNOLOGIES (2000) IN); Fri Feb 4 10:22:01 EST 2005

circumferential (that is, hoop) directions of the CIPP. This method is also recommended when large-diameter CIPP is installed that may otherwise not be prepared with a tubular restraint.

8.1.3 The CIPP samples for each of these cases should be large enough to provide a minimum of three specimens and a recommended five specimens for flexural testing and also for tensile testing for internal pressure applications. The flexural and tensile specimens should be prepared in a manner consistent with 8.3.1 of Specification D 5813. For flexural and tensile properties, the full wall thickness of the CIPP samples shall be tested. Any plastic coatings or other CIPP layers not included in the structural design of the CIPP may be carefully ground off of the specimens prior to testing. If the sample is irregular or distorted such that proper testing is inhibited, attempts shall be made to machine any wall thickness from the inside pipe face of the sample. Any machining of the outside pipe face of the sample shall be done carefully so as to minimize the removal of material from the outer structural wall of the sample. Individual specimens should be clearly marked for easy identification and retained until final disposition or CIPP acceptance, or both, has been given.

8.1.4 Short-Term Flexural (Bending) Properties-The initial tangent flexural modulus of elasticity and flexural stress should be measured for gravity and pressure pipe applications in accordance with Test Method D 790, Test Method I, Procedure A and should meet the requirements of Table 1 within the 16:1 length to depth constraints. For specimens greater than 0.5 in. (12.7 mm) in depth, the width-to-depth ratio of the specimen should be increased to a minimum of 1:1 and should not exceed 4:1. For samples prepared in accordance with 8.1.1, determine flexural properties in the axial direction where the length of the test specimen is cut along the longitudinal axis of the pipe. Special consideration should be given to the preparation of flexural specimens to ensure opposite sides are parallel and adjacent edges are perpendicular. Flexural specimens should be tested such that the inside pipe face is tested in tension and the outside pipe face is in compression.

8.1.4.1 Fiber-Reinforced CIPP Flexural Properties— Where the CIPP is reinforced with oriented continuous or discontinuous fibers to enhance the physical properties of the CIPP, specimens should be sampled in accordance with 8.1.2, and flexural properties should be determined in accordance with 8.1.3 along the longitudinal axis and circumferential axis of the installed CIPP.

8.1.5 Short-Term Tensile Properties—The tensile strength should be measured for pressure pipe applications in accordance with Test Method D 638. Specimens should be prepared in accordance with Types I, II, and III of Fig. 1 of Test Method D 638. Specimens greater than 0.55 in. (14 mm) thick should maintain all dimensions for a Type III specimen, except the thickness will be that of the CIPP sample obtained. The rate of specimen testing should be carried out in accordance with Table 1 of Test Method D 638. Specimens should be prepared in accordance with 8.1.1 and tested along the longitudinal axis of the installed CIPP.

8.1.5.1 Fiber-Reinforced CIPP Tensile Testing—Where the CIPP is reinforced with oriented continuous or discontinuous

fibers to enhance the physical properties of the CIPP, specimens should be sampled in accordance with 8.1.2 and tensile properties should be determined in accordance with Test Method D 3039 and tested along the longitudinal axis and circumferential axis of the installed CIPP.

8.1.6 CIPP Wall Thickness-The method of obtaining CIPP wall thickness measurements should be determined in a manner consistent with 8.1.2 of Specification D 5813. Thickness measurements should be made in accordance with Practice D 3567 for samples prepared in accordance with 8.1. Make a minimum of eight measurements at evenly spaced intervals around the circumference of the sample to ensure that minimum and maximum thicknesses have been determined. Deduct from the measured values the thickness of any plastic coatings or CIPP layers not included in the structural design of the CIPP. The average thickness should be calculated using all measured values and shall meet or exceed minimum design thickness as agreed upon between purchaser and seller. The minimum wall thickness at any point shall not be less than 87.5 % of the specified design thickness as agreed upon between purchaser and seller.

8.2 Gravity Pipe Leakage Testing-If required by the owner in the contract documents or purchase order, gravity pipes should be tested using an exfiltration test method where the CIPP is plugged at both ends and filled with water. This test should take place after the CIPP has cooled down to ambient temperature. This test is limited to pipe lengths with no service laterals and diameters of 36 in. or less. The allowable water exfiltration for any length of pipe between termination points should not exceed 50 U.S. gallons per inch of internal pipe diameter per mile per day, providing that all air has been bled from the line. During exfiltration testing, the maximum internal pipe pressure at the lowest end should not exceed 10 ft (3.0 m) of water or 4.3 psi (29.7 kPa), and the water level inside of the inversion standpipe should be 2 ft (0.6 m) higher than the top of the pipe or 2 ft (0.6 m) higher than groundwater level, whichever is greater. The leakage quantity should be gaged by the water level in a temporary standpipe placed in the upstream plug. The test should be conducted for a minimum of 1 h.

Note 4—It is impractical to test pipes above 36 in. diameter for leakage due to the technology available in the pipe rehabilitation industry. Post inspection of larger pipes will detect major leaks or blockages.

8.3 Pressure Pipe Testing—If required by the purchaser in the purchase agreement, pressure pipes should be subjected to a hydrostatic pressure test. A pressure and leakage test at twice the known working pressure or at the working pressure plus 50 psi, whichever is less, is recommended. The pressure should initially be held at the known working pressure for a period not less than 12 h, then increased to the test pressure for an additional period of 2 to 3 h to allow for stabilization of the CIPP. After this period, the pressure test will begin for a minimum of 1 h. The allowable leakage during the pressure test should be 20 U.S. gallons per inch of internal pipe diameter per mile per day, providing that all air has been evacuated from the line prior to testing and the CIPP has cooled down to ambient temperature.

Note 5—The allowable leakage for gravity and pressure pipe testing is a function of water loss at the end seals and trapped air in the pipe.

Copyright by ASTM Int'l (all rights reserved);

Reproduction authorized per License Agreement with ALLAN CLARK (NU FLOW TECHNOLOGIES (2000) IN); Fri Feb 4 10:22:01 EST 2005

🕮 F 1743 – 96 (2003)

8.4 Delamination Test—If required by the purchaser in the purchase agreement, a delamination test should be performed on each installation length specified. CIPP samples should be prepared in accordance with 8.1.2, except that a portion of the fabric tube material in the sample should be dry and isolated from the resin in order to separate tube layers for testing (consult the tube manufacturer for further information). Delamination testing should be in accordance with Test Method D 903 with the following exceptions:

8.4.1 The rate of travel of the power-actuated grip should be 1 in. (25 mm)/min.

8.4.2 Five test specimens should be tested for each installation specified.

8.4.3 The thickness of the test specimen should be minimized, but should be sufficient to adequately test delamination of nonhomogeneous CIPP layers.

8.5 The peel or stripping strength between any nonhomogeneous layers of the CIPP laminate should be a minimum of 10 lb/in. (178.60 g/mm) for typical CIPP applications. Note 6-The purchaser may designate the similar layers between which the delamination test will be conducted.

Note 7—For additional details on conducting the delamination test, contact the seller.

8.6 Inspection and Acceptance—The installation may be inspected visually if appropriate, or by closed-circuit television if visual inspection cannot be accomplished. Variations from true line and grade may be inherent because of the conditions of the original piping. No infiltration of groundwater should be observed. All service entrances should be accounted for and be unobstructed.

9. Keywords

9.1 cured-in-place pipe; installation—underground; plastic pipe—thermoset; rehabilitation; thermosetting resin pipe

APPENDIX

(Nonmandatory Information)

X1. DESIGN CONSIDERATIONS

X1.1 General Guidelines—The design thickness of the CIPP is a function of the resin, materials of construction of the fabric tube, and the condition of the existing pipe. In addition, depending on the condition of the pipe, the design thickness of

the CIPP may also be a function of groundwater, soil type, and influence of live loading surrounding the host pipe. For guidance relating to terminology of piping conditions and related design equations, see Appendix X1 of Practice F 1216.

ASTM International takes no position respecting the validity of any patent rights asserted in connection with any item mentioned in this standard. Users of this standard are expressly advised that determination of the validity of any such patent rights, and the risk of infringement of such rights, are entirely their own responsibility.

This standard is subject to revision at any time by the responsible technical committee and must be reviewed every five years and if not revised, either reapproved or withdrawn. Your comments are invited either for revision of this standard or for additional standards and should be addressed to ASTM International Headquarters. Your comments will receive careful consideration at a meeting of the responsible technical committee, which you may attend. If you feel that your comments have not received a fair hearing you should make your views known to the ASTM Committee on Standards, at the address shown below.

This standard is copyrighted by ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959, United States. Individual reprints (single or multiple copies) of this standard may be obtained by contacting ASTM at the above address or at 610-832-9585 (phone), 610-832-9555 (fax), or service@astm.org (e-mail); or through the ASTM website (www.astm.org).

Copyright by ASTM Int'l (all rights reserved);

7

Reproduction authorized per License Agreement with ALLAN CLARK (NU FLOW TECHNOLOGIES (2000) IN); Fri Feb 4 10:22:01 EST 2005

Amendment to ASTM F1743-96 Author: Doug Kleweno of DGK Technologies

Douglas Kleweno 25124 235th Way SE Maple Valley, WA 93038-5905

May 22, 2001

Whom it may concern:

I am writing this letter at the request of Mr. David Ratliff (Nu Flow Installer, Abilene, Texas) in order to provide clarification for ASTM F1743 "Standard Practice for Rehabilitation of Existing Pipelines and Conduits by Pulled-in-Place Installation of Cured-In-Place Thermosetting Resin Pipe (CIPP)" and similar pulled-in-place products. In my previous position I was the Technical Manager for InLiner USA CIPP products and am the author of ASTM F1743. I have also been involved in editing ASTM F1216 and ASTM D5813, which are also CIPP installation and material specifications, respectively.

When writing an ASTM specification it is necessary to provide enough minimum requirements so that the product can meet or exceed engineering and design criteria. However, ASTM specifications also must be generalized enough to accommodate the majority of products and processes that may want to reference it. F1743 was generally written for most CIPP applications where heated cures predominate in the market. There are many resin applications for CIPP and other products (boat building, automotive, heavy truck) where ambient cure resin formulations are common and used successfully. Technically speaking, an ambient cure formulation for CIPP does initiate at a temperature less that 180F, which is recommended in Section 5.2.3 or F1743.

More critical to CIPP and other applications is whether the product (CIPP in this case) meets the minimum initial structural property recommendations. The minimum properties for the CIPP were provided in Section 4.2.3 of ASTM F1743 and this is probably the most important aspect for the product to meet the requirements for external hydrostatic or soil loading that may surround the pipe. These minimum properties are the numbers by which the minimum design thickness is determined for the installed CIPP or part liner.

As a side note it is my experience that the curing strategy is chosen for handling and transportation purposes. Large liners for CIPP require long catalyzed stability so the product can be processed, transported, and installed. For short runs or tubes processed at a job site, it was common to use ambient or semi-ambient cure formulations to reduce the time at the job site and the associated inconvenience to the surrounding community.

I hope this has provided some additional clarification.

Doug Kleweno (423) 413-8529

August 24, 2005

TEST REPORT Send To: 1P790 NU FLOW TECHNOLOGIES 2000 INC. 1010 THORNTON ROAD SOUTH OSHAWA ON L1J 7E2 CANADA Attn: MR. BOB FOWLE Customer: 1P790 Plant: 1P790 NU FLOW TECHNOLOGIES 2000 INC. NU FLOW TECHNOLOGIES 2000 INC. 1010 THORNTON ROAD SOUTH 1010 THORNTON ROAD SOUTH OSHAWA ON L1J 7E2 OSHAWA ON L1J 7E2 CANADA CANADA Attn: MR. BOB FOWLE Attn: MR. BOB FOWLE Sample Description: Nu Flow #2000 Pipe Lining - Liner Test Type: AA - Annual Collection Thank you for having your product tested by NSF. The enclosed report details the result of the testing performed on your product. Your program representative will ÷. be contacting you in the near future if there are any remaining issues concerning the status of this product. Please do not hesitate to contact us if you have any immediate questions pertaining to your product. Status: Pass Reviewer: Atabek Ciechanowski - Manager, Engineering Laboratory 010 - Plumbing and Related Programs CC: Program: Program Rep: AMY CHOKSEY 01 - Domestic Region: PA Project: 224520 Page 1 of 4 FI20050824120213 J-00012414 This report shall not be reproduced, except in its entirety, without the written approval of NSF. This report does not represent NSF Certification or authorization to use the NSF Mark. Authorization to use the NSF Mark is limited to products appearing in the Company's Official NSF Listing, (www.nsf.org). The results relate only to those items tested. 789 N. Dixboro Road, Ann Arbor, Michigan 48105-9723 USA 1-800-NSF-MARK 734-769-8010 www.nsf.org

General Information

Standard: 014 - PLASTICS PIPING SYSTEM COMPONENTS AND RELATED MATERIALS

Page: 2

	DCC Number / Tracking ID PL04249		
	Family Code A		
	Material Type Epoxy		
	Monitor Code A		
	Performance Standard F1216		
	Performance Standard Year 2003		
	-		
	Product Identifier Part A Batch # 030904, Part	B Batch # 040405_3	
	Sample Description Liner		
	Trade Designation Nu Flow #2000 Pipe Lining		
Sample Id:	S-0000161582		
Description:	Nu Flow #2000 Pipe Lining - Liner		
Sampled Date:	05/19/2005		
Received Date:	05/23/2005		
Testing Parame	ter 🔥 🦉	Result	Linu Units *
Engineering Lab			
	Leakage Test		
Initial wat	er column:	10	feet
Final wate	er column:	10	feet
Time:	<u> </u>	60	minutes
Leakage r	ate:	0	g/in/day
Required	maximum leakage rate:	50	g/in/day
Actual lea	kage rate:	0	g/in/day
Gravity Pi	pe Leakage Test:	Pass	· · ·
Flex Modulu	s		
Specimen	s conditioned for	40	hours
Specimen	s conditioned at	73	degrees F
Relative h	umidity	50	%
Test temp	erature Required	73	degrees F
Test temp	erature Actual	73	degrees F
	crosshead speed	0,22	īc/min
Actual cro	sshead speed	0.22	in/min
Deflection		<5	%
Specimen	1	280000	psi
Specimen	2	315000	psi
Specimen	3	275000	psi
Specimen	4	242000	psi
Specimen	5	257000	psi
Required	Average Modulus (minimum)	250000 psi	
Actual Av	erage Modulus	274000	psi
Flex Mod		PASS	
Flexural Stre			
	s conditioned for	40	hours
	s conditioned at	73	degrees F
Relative H		50	percent
Test Tem		73	degrees F
Cross Hea		0.22	in/min.
	1 Flexural Strength	6280	psi
	2 Flexural Strength	6480	psi
	3 Flexural Strength	6010	psi
	4 Flexural Strength	5210	psi

FI20050824120213

J-00012414

Page 2 of 4

This report shall not be reproduced, except in its entirety, without the written approval of NSF. This report does not represent NSF Certification or authorization to use the NSF Mark. Authorization to use the NSF Mark is limited to products appearing in the Company's Official NSF Listing, (www.nsf.org). The results relate only to those items tested.

Original reports bear a light blue NSF Mark and border.

÷

esting Parameter	Result	Units*	
ngineering Lab (Cont'd)			
Specimen 5 Flexural Strength	5820	psi	
Average Flexural Strength	5960	psi	-
Required Flexural Strength	4500	psi	
Flexural Strength Test	Pass		
Strength, Tensile			
Specimens conditioned for	40	hours	
Specimens conditioned at	73	degrees F	
Relative humidity	50	%	
Test Temperature	73	degrees F	
Actual Crosshead Speed	0.2	in/min.	
Required Crosshead Speed	0.2	in/min.	
Specimen 1: Tensile Strength	3930	psi	
Specimen 2: Tensile Strength	4540	psi	
Specimen 3: Tensile Strength	4010	psi	
Specimen 4: Tensile Strength	3690	psi	
Specimen 5: Tensile Strength	3920	psi	
Req'd Average Tensile Strength (minimum)	3000	-	
Actual Average Tensile Strength	4020	psi	
Tensile Strength Test	PASS		
Specimen Fabrication	· · · · · · · · · · · · · · · · · · ·		
Specimen Fabrication	COMPLETE		
Time	1	hours	
Technician	3356		

FI20050824120213

J-00012414

Page 3 of 4

This report shall not be reproduced, except in its entirety, without the written approval of NSF. This report does not represent NSF Certification or authorization to use the NSF Mark. Authorization to use the NSF Mark is limited to products appearing in the Company's Official NSF Listing, (www.nsf.org). The results relate only to those items tested.

Page: 3

	ld	Address
All work performed at:	→ NSF_AA	NSF International
		789 Dixboro Road
		Ann Arbor MI 48105-0140
		USA

References to Testing Procedures;

P4318 Text Modification

NSF Reference	Parameter / Test Description		

P3084	Gravity Pipe Leakage Test		
P3122	Flex Modulus		
P3123	Flexural Strength Test		
P3127	Strength, Tensile		
P3172	Specimen Fabrication		

F(200	508241	120213
Final_	Std	

This report shall not be reproduced, except in its entirety, without the written approval of NSF. This report does not represent NSF Certification or authorization to use the NSF Mark. Authorization to use the NSF Mark is limited to products appearing in the Company's Official NSF Listing, (www.nsf.org). The results relate only to those items tested.

Original reports hear a light blue NSF Mark and border.

Page 4 of 4

NU FLOW TECHNOLOGIES 2000 INC. 1010 Thornton Road South Oshawa, Ontario L1J 7E2

Laboratory Report

002/002

Attention	Client's Order N	lumber Da	ate	Report Number	
Sinan Omari	9282	9282 16 March 2007		07-845	
Client's Material / Product	Description	Date Sample Receive	d Mate	erial / Product Specification	
(1) Sample		06 March 2007		ASTM D5813-04	
Test Performed			Result		
1. Tangant Flavor (Mardal					
1. <u>Tangent Flexural Modulu</u> (ASTM D790)	<u>IS</u>				
Crosshead speed:	0.05"/min	Sample #			
 1000 lbf Load cel 	Part of the state of the state	1	384400		
 2 inch support spa 	an	2	420900	250,000 psi	
• L/D = 16		3	304600	Minimum	
Specimen Geomet	rv:	4	425400		
1/8" x 1/2" x 4"	A Los Marchines	<u>5</u>	<u>397100</u>		
 5 specimens tested 		Average	386500		
Units: psi					
2. Flexural Strength		Sample #			
(ASTM D790)		1	6 0 7 0		
 5 specimens teste 	d	2	6 670		
Units: psi		3	5 400	4,500 psi Minimum	
		4	6 200		
		<u>5</u>	6 4 4 0		
		Average	6 1 6 0		
3. Wall Thickness		C11.4	CI 1 D		
		Side A	Side B		
Units: mm		3.56	3.26		
Four measurement	s taken on	3.62 3.67	3.45 3.50		
each side		3.79	3.74		

Telephone (905) 673-9899

Address 2421 Drew Road Mississauga. Ontario Canada LSS 1A1

Facsimile (905) 673-8394

E-mail aahlawat@acuren.com

Web www.acuren.com

Cor Di Corrine Dimnik, B.Sc.

Certified Inspector.

Dr. Erhan Ulvan, Ph. D, P. Eng., Laboratory Manager.

() The in whole or in part, of th name of Acuren shall n or damage whole or in part, of the test or substance of this information shall reare only to the name of Acuren shall not be used in any manner in connection with the take, offenin or damage resulting directly or and product error, negligence or ensist report date. (v) Work which may progress beyond thirty-one (31) days in durati (v) Any test soutonuced ha an approved subcontractor are highlighted above (1) (v) Any test soutonuced has an approved subcontractor are highlighted above (1) and the source of the antiproved subcontractor are highlighted above (1) and the source of the antiproved subcontractor are highlighted above (1) and the source of the antiproved subcontractor are highlighted above (1) and the source of the antiproved subcontractor are highlighted above (1) and the source of the antiproved subcontractor are highlighted above (1) and the source of the antiproved subcontractor are highlighted above (1) and the source of the antiproved subcontractor are highlighted above (1) and the source of the antiproved subcontractor are highlighted above (1) and the source of the antiproved subcontractor are highlighted above (1) and the source of the antiproved subcontractor are highlighted above (1) and the source of the antiproved subcontractor are highlighted above (1) and the source of the antiproved subcontractor are highlighted above (1) and the source of the antiproved subcontractor are highlighted above (1) and the source of the antiproved subcontractor are highlighted above (1) and the source of the antiproved subcontractor are highlighted above (1) and the source of the antiproved subcontractor are highlighted above (1) and the source of the antiproved subcontractor are highlighted above (1) and the source of the antiproved subcontractor are highlighted above (1) and the source of with the sale, offering or (m) (iv) Un e (")

P4318 Text Modification

Flow Comparisons

Comparison between a new pipe and a rehabilitated pipe

Diam	leter	Hazen Williams	Flow for new pipe	Thickness of Liner (mm)	Resulting internal	Hazen Williams	Flow for rehabilitated	% Loss
(m)	(in)	Coefficient (C)	(m ³ /s)		diameter (m)	coefficient (C)	pipe (m ³ /s)	
0.15	6	140	0.27	2	0.146	140	0.25	-6.86
0.20	8	140	0.57	2	0.196	140	0.54	-5.17
0.30	10	140	1.02	2	0.246	140	0.98	-4.15
0.40	12	140	1.65	2.5	0.295	140	1.57	-4.32

Comparison between old pipe and a rehabilitated pipe

Old Pip	e Hazen Williams	Flow for	Thickness of	Old Pipe	Hazen Williams	Flow for	%
Diamete	er Coefficient (C)	old pipe	Liner (mm)	diameter (m)	coefficient (C)		Increase
		(m³/s)				(m ³ /s)	
(m) (ir)						
0.13 6	60	0.08	2	0.146	140	0.25	216.63
0.18 8	60	0.18	2	0.196	140	0.54	191.91
0.23 10	60	0.35	2	0.246	140	0.98	178.48
0.27 12	2 60	0.53	2.5	0.295	140	1.57	194.52

Date Proposal Submitted	4/1/2010	Section	1102.3
Chapter	11	TAC Recommendation	Pending Review
Affects HVHZ	No	Commission Action	Pending Review
Proponent	Allen Johnson	General Comments	No
Attachments	Yes	Alternate Language	No

Related Modifications

702.1, 702.2, 702.3, 1102.1, 1102.2, 1102.4

Summary of Modification

Modify the current building materials list to include Cure-In Place (CIPP) Thermosetting Resin Conduit Liner that meets ASTM F-1743, ASTM F-1216, ASTM D790, ASTM D638 and ASTM D543. in sections 702.1,702.2, 702.3, 1102.1, 1102.2, 1102.3 and 1102.4 for building drains and building sewer pipes.

Rationale

CIPP liners are an alternative to traditional pipe replacement that increases the flow charicteristics of the pipe.

Fiscal Impact Statement

Impact to local entity relative to enforcement of code

There are no additional costs relative to enforcement compared to traditional replacement.

Impact to building and property owners relative to cost of compliance with code

There is a significant cost savings to building and property owners as well as reducing potentially hazardous materials left undisturbed as compared to traditional pipe replacement CIPP liners are seamless and jointless, reducing the number of potential failures.

Impact to industry relative to the cost of compliance with code

There is no impact to the industry relative to the cost of compliance with code.

Requirements

Has a reasonable and substantial connection with the health, safety, and welfare of the general public

CIPP lining eliminates the destruction of landscapes and property as well as the health dangers associated with removing of sewer pipes in need of repair.

Strengthens or improves the code, and provides equivalent or better products, methods, or systems of construction

CIPP liners provide a repair solution that allows drain, waste and sewer pipes to be repaired without the digging and destruction required for traditional pipe repairs or replacement.

Does not discriminate against materials, products, methods, or systems of construction of demonstrated capabilities CIPP lining can be installed in any type of host pipe used for Building drains and Building sewer pipes for residential, commercial

and industrial applications.

Does not degrade the effectiveness of the code

CIPP lining does not degrade the effectiveness of the code.

SECTION 702 MATERIALS

P4319 Text Modification

702.1 Above-ground sanitary drainage and vent pipe. Above-ground soil, waste and vent pipe shall conform to one of the standards listed in Table 702.1.

TABLE 702.1 ABOVE-GROUND DRAINAGE AND VENT PIPE

MATERIAL	STANDARD
Acrylonitrile butadiene styrene (ABS) plastic pipe in IPS diameters, including Schedule 40, DR 22 (PS 200) and DR 24 (PS 140); with a solid, cellular core or composite wall	ASTM D 2661; ASTM F 628; ASTM F 1488; CSA B181.1
Brass pipe	ASTM B 43
Cast-iron pipe	ASTM A 74; ASTM A 888; CISPI 301
Copper or copper-alloy pipe	ASTM B 42; ASTM B 302
Copper or copper-alloy tubing (Type K, L, M or DWV)	ASTM B 75; ASTM B 88; ASTM B 251; ASTM B 306
Galvanized steel pipe	ASTM A 53
Glass pipe	ASTM C 1053
Polyolefin pipe	ASTM F 1412; CAN/CSA B181.3
Polyvinyl chloride (PVC) plastic pipe in IPS diameters, including schedule 40, DR 22 (PS 200), and DR 24 (PS 140); with a solid, cellular core or composite wall	ASTM D 2665; ASTM F 891; ASTM F 1488; CSA B181.2
Polyvinyl chloride (PVC) plastic pipe with a 3.25-inch O.D. and a solid, cellular core or composite wall	ASTM D 2949, ASTM F 1488
Polyvinylidene fluoride (PVDF) plastic pipe	ASTM F 1673; CAN/CSA B181.3
Stainless steel drainage systems, Types 304 and 316L	ASME A112.
Cured-In Place Thermosetting Resin Conduit Liner (CIPP)	<u>ASTM F1743, ASTM F1216, ASTM</u> <u>D790, ASTM D638, ASTM D543</u>

Designation: F 1743 - 96 (Reapproved 2003)

An American National Standard

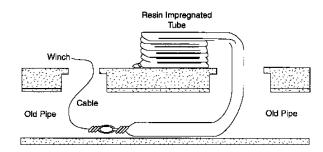
Standard Practice for Rehabilitation of Existing Pipelines and Conduits by Pulledin-Place Installation of Cured-in-Place Thermosetting Resin Pipe (CIPP)¹

This standard is issued under the fixed designation F 1743; the number immediately following the designation indicates the year of original adoption or, in the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. A superscript epsilon (ϵ) indicates an editorial change since the last revision or reapproval.

1. Scope

1.1 This practice describes the procedures for the reconstruction of pipelines and conduits (4 to 96 in. (10 to 244 cm) diameter) by the pulled-in-place installation of a resinimpregnated, flexible fabric tube into an existing conduit and secondarily inflated through the inversion of a calibration hose by the use of a hydrostatic head or air pressure (see Fig. 1). The resin is cured by circulating hot water or by the introduction of controlled steam into the tube. When cured, the finished cured-in-place pipe will be continuous and tight fitting. This reconstruction process may be used in a variety of gravity and pressure applications such as sanitary sewers, storm sewers, process piping, electrical conduits, and ventilation systems.

1.2 The values stated in inch-pound units are to be regarded as the standard. The values given in parentheses are for informational purposes only.


Note 1—There are no ISO standards covering the primary subject matter of this practice.

1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

2. Referenced Documents

2.1 ASTM Standards:

- D 543 Test Method of Resistance of Plastics to Chemical $\ensuremath{\mathsf{Reagents}}^2$
- D 638 Test Method for Tensile Properties of Plastics²
- D 790 Test Methods for Flexural Properties of Unreinforced and Reinforced Plastics and Electrical Insulating Materials²
- D 903 Test Method for Peel or Stripping Strength of Adhesive Bonds^3

Step 1 - Pull resin-impregnated tube into existing pipe.

Step 2 - Calibration hose inversion

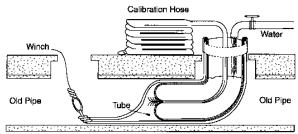


FIG. 1 Cured-in-Place Pipe Installation Methods

- D 1600 Terminology for Abbreviated Terms Relating to $\ensuremath{\text{Plastics}}^2$
- D 1682 Test Method for Breaking Load and Elongation of Textile ${\rm Fabrics}^4$
- D 3039/D3039M Test Method for Tensile Properties of Polymer Matrix Composite Materials⁵

⁴ Discontinued: See 1991 Annual Book of ASTM Standards, Vol 07.01. ⁵ Annual Book of ASTM Standards, Vol 15.03.

Copyright © ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959, United States.

1

Copyright by ASTM Int'l (all rights reserved); Reproduction authorized per License Agreement with ALLAN CLARK (NU FLOW TECHNOLOGIES (2000) IN); Fri Feb 4 10:22:01 EST 2005

2010 Triennial

¹ This practice is under the jurisdiction of ASTM Committee F-17 on Plastic Piping Systems and is the direct responsibility of Subcommittee F17.67 on Trenchless Plastic Pipeline Technology.

Current edition approved Feb. 10, 2003. Published April 2003. Last previous edition approved in 1996 as F1743-96.

² Annual Book of ASTM Standards, Vol 08.01.

³ Annual Book of ASTM Standards, Vol 15.06.

- D 3567 Practice for Determining Dimensions of Reinforced Thermosetting Resin Pipe (RTRP) and Fittings⁶
- D 4814 Specification for Automotive Spark—Ignition Engine Fuel^7
- D 5813 Specification for Cured-in-Place Thermosetting Resin Sewer Pipe^6
- F 412 Terminology Relating to Plastic Piping Systems⁶
- F 1216 Practice for Rehabilitation of Existing Pipelines and Conduits by the Inversion and Curing of a Resin-Impregnated Tube⁶
- 2.2 AWWA Standard:
- M28 Manual on Cleaning and Lining Water Mains⁸
- 2.3 NASSCO Standard:
- Recommended Specifications for Sewer Collection System Rehabilitation⁹

Note 2—An ASTM specification for cured-in-place pipe materials appropriate for use in this practice is under preparation and will be referenced in this practice when published.

3. Terminology

3.1 *General*—Definitions are in accordance with Terminology F 412. Abbreviations are in accordance with Terminology D 1600, unless otherwise indicated.

3.2 Definitions of Terms Specific to This Standard:

3.2.1 *calibration hose*—an impermeable bladder which is inverted within the resin-impregnated fabric tube by hydrostatic head or air pressure and may optionally be removed or remain in place as a permanent part of the installed cured-in-place pipe as described in 5.2.2.

3.2.2 cured-in-place pipe (CIPP)—a hollow cylinder consisting of a fabric tube with cured (cross-linked) thermosetting resin. Interior or exterior plastic coatings, or both, may be included. The CIPP is formed within an existing pipe and takes the shape of and fits tightly to the pipe.

3.2.3 delamination-separation of layers of the CIPP.

3.2.4 *dry spot*—an area of fabric of the finished CIPP which is deficient or devoid of resin.

3.2.5 *fabric tube*—flexible needled felt, or equivalent, woven or nonwoven material(s), or both, formed into a tubular shape which during the installation process is saturated with resin and holds the resin in place during the installation and curing process.

3.2.6 *inversion*—the process of turning the calibration hose inside out by the use of water pressure or air pressure.

3.2.7 *lift*—a portion of the CIPP that is a departure from the existing conduit wall forming a section of reverse curvature in the CIPP.

4. Significance and Use

4.1 This practice is for use by designers and specifiers, regulatory agencies, owners, and inspection organizations who are involved in the rehabilitation of conduits through the use of

a resin-impregnated fabric tube pulled-in-place through an existing conduit and secondarily inflated through the inversion of a calibration hose. Modifications may be required for specific job conditions.

5. Recommended Materials and Manufacture

5.1 *General*—The resins, fabric tube, tube coatings, or other materials, such as the permanent calibration hose when combined as a composite structure, shall produce CIPP that meets the requirements of this specification.

5.2 *CIPP Wall Composition*—The wall shall consist of a plastic coated fabric tube filled with a thermosetting (cross-linked) resin, and if used, a filler.

5.2.1 Fabric Tube-The fabric tube should consist of one or more layers of flexible needled felt, or equivalent, woven or nonwoven material(s), or both, capable of carrying resin, withstanding installation pressures, and curing temperatures. The material(s) of construction should be able to stretch to fit irregular pipe sections and negotiate bends. Longitudinal and circumferential joints between multiple layers of fabric should be staggered so as not to overlap. The outside layer of the fabric tube should have an impermeable flexible coating(s) whose function is to contain the resin during and after fabric tube impregnation. The outer coating(s) must facilitate monitoring of resin saturation of the material(s) of construction of the fabric tube. The fabric tube should be fabricated to a size that, when installed, will tightly fit the internal circumference and the length of the original conduit. Allowance should be made for circumferential and longitudinal stretching of the fabric tube during installation. As required, the fabric tube should meet minimum tensile strength requirements in the longitudinal and transverse directions as specified in 7.1. All the material(s) of construction for the fabric tube should be compatible with the resin system used.

5.2.2 Calibration Hose:

5.2.2.1 *Removable Calibration Hose*—The removable calibration hose should consist of an impermeable plastic, or impermeable plastic coating(s) on flexible woven or nonwoven material(s), or both, that do not absorb resin and are capable of being removed from the CIPP.

5.2.2.2 Permanent Calibration Hose-The permanent calibration hose should consist of an impermeable plastic coating on a flexible needled felt or equivalent woven or nonwoven material(s), or both, that are capable of absorbing resin and are of a thickness to become fully saturated with resin. The calibration hose should be translucent to facilitate postinstallation inspection. The calibration hose should be fabricated to a size that, when installed, will tightly fit the internal circumference and the length of the resin saturated fabric tube. Once inverted, the calibration hose becomes part of the fabric tube, and once properly cured, should bond permanently with the fabric tube. The properties of the calibration hose should meet minimum tensile strength requirements in the longitudinal and transverse directions as specified in 7.1. All the material(s) of construction for the calibration hose should be compatible with the resin system used.

5.2.3 *Resin*—A chemically resistant isophthalic based polyester, or vinyl ester thermoset resin and catalyst system or an

Copyright by ASTM Int'l (all rights reserved);

2

Plumbing

Reproduction authorized per License Agreement with ALLAN CLARK (NU FLOW TECHNOLOGIES (2000) IN); Fri Feb 4 10:22:01 EST 2005

⁶ Annual Book of ASTM Standards, Vol 08.04.

⁷ Annual Book of ASTM Standards, Vol 05.03.

⁸ Available from the American Water Works Association, 6666 W. Quincey Ave., Denver, CO 80235.

⁹ Available from the National Association of Sewer Service Companies, 101 Wymore Rd., Suite 501, Altamonte, FL 32714.

epoxy resin and hardener that is compatible with the installation process should be used. The resin should be able to cure in the presence of water and the initiation temperature for cure should be less than 180°F (82.2°C). The cured resin/fabric tube system, with or without the calibration hose, shall be expected to have as a minimum the initial structural properties given in Table 1. These physical properties should be determined in accordance with Section 8. The cured resin/fabric tube system, with or without the calibration hose, should meet the minimum chemical resistance requirements as specified in 7.2.

6. Installation Recommendations

6.1 Cleaning and Pre-Inspection:

6.1.1 Prior to entering access areas, such as manholes, and performing inspection or cleaning operations, an evaluation of the atmosphere to determine the presence of toxic or flammable vapors or lack of oxygen must be undertaken in accordance with local, state, or federal safety regulations.

6.1.2 Cleaning of Pipeline—All internal debris should be removed from the original pipeline. Gravity pipes should be cleaned with hydraulically powered equipment, high-velocity jet cleaners, or mechanically powered equipment in accordance with NASSCO Recommended Specifications for Sewer Collection System Rehabilitation. Pressure pipelines should be cleaned with cable attached devices or fluid propelled devices in accordance with AWWA M28.

6.1.3 Inspection of Pipelines—Inspection of pipelines should be performed by experienced personnel trained in locating breaks, obstacles, and service connections by closedcircuit television or man entry. The interior of the pipeline should be carefully inspected to determine the location of any conditions that may prevent proper installation of the impregnated tube, such as protruding service taps, collapsed or crushed pipe, and reductions in the cross-sectional area of more than 40 %. These conditions should be noted so that they can be corrected.

6.1.4 *Line Obstructions*—The original pipeline should be clear of obstructions such as solids, dropped joints, protruding service connections, crushed or collapsed pipe, and reductions in the cross-sectional area of more than 40 % that may hinder or prevent the installation of the resin-impregnated fabric tube. If inspection reveals an obstruction that cannot be removed by conventional sewer-cleaning equipment, then a point-repair excavation should be made to uncover and remove or repair the obstruction.

6.2 *Resin Impregnation*—The fabric tube should be totally impregnated with resin (wet-out) and run through a set of rollers separated by a space, calibrated under controlled conditions to ensure proper distribution of resin. The volume of

TABLE 1	CIPP	Initial	Structural	Pro	nerties ⁴
IADLL I		mmai	Juddial	FIU	pernea

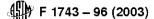
Property	Test Method —	Minimum Value		
Flopeity	Test Method -	psi	(MPa)	
Flexural strength	D 790	4 500	(31)	
Flexural modulus	D 790	250 000	(1724)	
Tensile strength (for pressure pipes only)	D 638	3 000	(21)	

^AThe values in Table 1 are for field inspection. The purchaser should consult the manufacturer for the long-term structural properties. resin used should be sufficient to fully saturate all the voids of the fabric tube material, as well as all resin-absorbing material of the calibration hose at nominal thickness and diameter. The volume should be adjusted by adding 3 to 15 % excess resin to allow for the change in resin volume due to polymerization, the change in resin volume due to thermal expansion or contraction, and resin migration through the perforations of the fabric tube and out onto the host pipe.

6.3 *Bypassing*—If bypassing of the flow is required around the sections of pipe designated for reconstruction, the bypass should be made by plugging the line at a point upstream of the pipe to be reconstructed and pumping the flow to a downstream point or adjacent system. The pump and bypass lines should be of adequate capacity and size to handle the flow. Services within this reach will be temporarily out of service.

6.3.1 Public advisory services shall notify all parties whose service laterals will be out of commission and advise against water usage until the main line is back in service.

6.4 Installation Methods:


6.4.1 Perforation of Resin-Impregnated Tube—Prior to pulling the resin-impregnated fabric tube in place, the outer impermeable plastic coating may optionally be perforated. When the resin-impregnated fabric tube is perforated, this should allow resin to be forced through the perforations and out against the existing conduit by the force of the hydrostatic head or air pressure against the inner wall of the calibration hose. The perforation should be done after fabric tube impregnation with a perforating roller device at the point of manufacture or at the jobsite. Perforations should be made on both sides of the lay-flat fabric tube covering the full circumference with a spacing no less than 1.5 in. (38.1 mm) apart. Perforating slits should be a minimum of 0.25 in. (6.4 mm) long.

6.4.2 Pulling Resin-Impregnated Tube into Position-The wet-out fabric tube should be pulled into place using a power winch. The saturated fabric tube should be pulled through an existing manhole or other approved access to fully extend to the next designated manhole or termination point. Care should be exercised not to damage the tube as a result of friction during pull-in, especially where curvilinear alignments, multilinear alignments, multiple offsets, protruding services, and other friction-producing host pipe conditions are present. Once the fabric tube is in place, it should be attached to a vertical standpipe so that the calibration hose can invert into the center of the resin-impregnated fabric tube. The vertical standpipe should be of sufficient height of water head to hold the fabric tube tight to the existing pipe wall, producing dimples at side connections. A device such as a dynamometer or load cell should be provided on the winch or cable to monitor the pulling force. Measure the overall elongation of the fabric tube after pull-in completion. The acceptable longitudinal elongation shall not be more than 5 % of the overall length measured after the calibration hose has been installed, or exceed the recommended pulling force.

6.4.3 Hydrostatic Head Calibration Hose Inversion—The calibration hose should be inserted into the vertical inversion standpipe, with the impermeable plastic membrane side out. At the lower end of the inversion standpipe, the calibration hose should be turned inside out and attached to the standpipe so

3

Copyright by ASTM Int'l (all rights reserved); Reproduction authorized per License Agreement with ALLAN CLARK (NU FLOW TECHNOLOGIES (2000) IN); Fri Feb 4 10:22:01 EST 2005

that a leakproof seal is created. The resin-impregnated fabric tube should also be attached to the standpipe so that the calibration hose can invert into the center of the resinimpregnated tube. The inversion head should be adjusted to be of sufficient height of water head to cause the calibration hose to invert from the initial point of inversion to the point of termination and hold the resin-impregnated fabric tube tight to the pipe wall, producing dimples at side connections. Care should be taken during the inversion so as not to overstress the felt fiber. At the request of the purchaser, the fabric tube manufacturer should provide information on the maximum allowable axial and longitudinal tensile stress for the fabric tube.

6.4.3.1 An alternative method of installation is top inversion. In this case, the calibration hose and resin-impregnated fabric tube are attached to a top ring. In this case, the tube itself forms the standpipe for generation of the hydrostatic head. Other methods of installation are also available and should be submitted for acceptance by the purchaser.

6.4.4 Using Air Pressure-The resin-impregnated fabric tube should be perforated as described in 6.4.1. Once perforated, the wet-out fabric tube should be pulled into place using a power winch as described in 6.4.2. The calibration hose should be inserted through the guide chute or tube of the pressure containment device in which the calibration hose has been loaded, with the impermeable plastic membrane side out. At the end of the guide chute, the calibration hose should be turned inside out and attached so that a leakproof seal is created. The resin-impregnated tube should also be attached to the guide chute so that the calibration hose can invert into the center of the resin-impregnated tube. The inversion air pressure should be adjusted to be of sufficient pressure to cause the calibration hose to invert from point of inversion to point of termination and hold the resin saturated fabric tube tight to the pipe wall, producing dimples at side connections. Care should be taken during the inversion so as not to overstress the woven and nonwoven materials. Take suitable precautions to eliminate hazards to personnel in the proximity of the construction when pressurized air is being used.

6.5 Lubricant During Installation—The use of a lubricant during installation is recommended to reduce friction during inversion. This lubricant should be poured into the fluid in the standpipe in order to coat the calibration hose during inversion. When air is used to invert the calibration hose, the lubricant should be applied directly to the calibration hose. The lubricant used should be a nontoxic, oil-based product that has no detrimental effects on the tube or boiler and pump system, and will not adversely affect the fluid to be transported.

6.6 Curing:

6.6.1 Using Circulating Heated Water—After installation is completed, suitable heat source and water recirculation equipment are required to circulate heated water throughout the section to uniformly raise the water temperature above the temperature required to effect a cure of the resin. The water temperature in the line during the cure period should be as recommended by the resin manufacturer or seller.

6.6.1.1 The heat source should be fitted with suitable monitors to measure the temperature of the incoming and

outgoing water supply. Temperature sensors should also be placed between the resin-impregnated tube and the host pipe invert at both termination points to monitor the temperatures during cure.

6.6.1.2 Initial cure will occur during temperature heat-up and is completed when exposed portions of the CIPP appear to be hard and sound and the remote temperature sensor indicates that the temperature is of a magnitude to realize an exotherm or cure in the resin. After initial cure is reached, the temperature should be raised to the post-cure temperature and held there for a period recommended by the resin manufacturer or seller. During post-cure, the recirculation of the water and cycling of the boiler to maintain the temperature continues. The curing of the CIPP must take into account the existing pipe material, the resin system, and ground conditions (temperature, moisture level, and thermal conductivity of soil).

6.6.2 Using Steam—After installation is completed, suitable steam-generating equipment is required to distribute steam throughout the pipe. The equipment should be capable of delivering steam throughout the section to uniformly raise the temperature within the pipe above the temperature required to effect a cure of the resin. The temperature in the line during the cure period should be as recommended by the resin manufacturer or seller.

6.6.2.1 The steam-generating equipment should be fitted with a suitable monitor to measure the temperature of the outgoing steam. Temperature sensors should also be placed between the resin-impregnated tube and the host pipe invert at both termination points to monitor the temperatures during cure.

6.6.2.2 Initial cure will occur during temperature heat-up and is completed when exposed portions of the new pipe appear to be hard and sound and the remote temperature sensor indicates that the temperature is of a magnitude to realize an exotherm or cure in the resin. After initial cure is reached, the temperature should be raised to the post-cure temperature and held there for a period recommended by the resin manufacturer or seller, during which time the distribution and control of steam to maintain the temperature continues. The curing of the CIPP must take into account the existing pipe material, the resin system, and ground conditions (temperature, moisture level, and thermal conductivity of soil).

6.6.3 *Required Pressures*—As required by the purchase agreement, the estimated maximum and minimum pressure required to hold the flexible tube tight against the existing conduit during the curing process should be provided by the seller and shall be increased to include consideration of external ground water, if present. Once the cure has started and dimpling for laterals is completed, the required pressures should be maintained until the cure has been completed. For water or steam, the pressure should be maintained within the estimated maximum and minimum pressure during the curing process. If the steam pressure or hydrostatic head drops below the recommended minimum during the cure, the CIPP should be inspected for lifts or delaminations and evaluated for its ability to fully meet the applicable requirements of 6.8 and Section 8.

6.7 Cool-Down:

Copyright by ASTM Int'l (all rights reserved);

Reproduction authorized per License Agreement with ALLAN CLARK (NU FLOW TECHNOLOGIES (2000) IN); Fri Feb 4 10:22:01 EST 2005

P4319 Text Modification

6.7.1 Using Cool Water after Heated Water Cure—The new CIPP should be cooled to a temperature below 100°F (38°C) before relieving the static head in the inversion standpipe. Cool-down may be accomplished by the introduction of cool water into the inversion standpipe to replace water being drained from a small hole made in the downstream end. Take care to cool down the CIPP in a controlled manner, as recommended by the resin manufacturer or the seller. Care should be taken to release the static head so that a vacuum will not be developed that could damage the newly installed CIPP.

6.7.2 Using Cool Water after Steam Cure—The new CIPP should be cooled to a temperature below 100°F (38°C) before relieving the internal pressure within the section. Cool-down may be accomplished by the introduction of cool water into the section to replace the mixture of air and steam being drained from a small hole made in the downstream end. Take care to cool the CIPP in a controlled manner as recommended by the resin manufacturer or the seller. Care should be taken to release the air pressure so that a vacuum will not be developed that could damage the newly installed CIPP.

6.8 Workmanship—The finished CIPP should be continuous over the entire length of an installation and be free of dry spots, lifts, and delaminations. If these conditions are present, the CIPP will be evaluated for its ability to meet the applicable requirements of Section 8. Where the CIPP does not meet the requirements of Section 8 or specifically stated requirements of the purchase agreement, or both, the affected portions of CIPP will be removed and replaced with an equivalent repair.

6.8.1 If the CIPP does not fit tightly against the original pipe at its termination point(s), the full circumference of the CIPP exiting the existing host pipe or conduit should be sealed by filling with a resin mixture compatible with the CIPP.

6.9 Service Connections—After the new CIPP has been installed, the existing active (or inactive) service connections should be reinstated. This should generally be done without excavation, and in the case of non-man entry pipes, from the interior of the pipeline by means of a television camera and a remote-control cutting device. Service connections shall be reinstated to at least 90 % of the original area as it enters the host pipe or conduit.

Note 3—In many cases, a seal is provided where the formed CIPP dimples at service connections. However, this practice should not be construed to provide a 100 % watertight seal at all service connections. If total elimination of infiltration and inflow is desired, other means, which are beyond the scope of this practice, may be necessary to seal service connections and to rehabilitate service lines and manholes.

7. Material Requirements

7.1 Fabric Tube Strength—If required by the purchaser in the purchase agreement, the fabric tube, and seam (if applicable) as a quality control test, when tested in accordance with Test Method D 1682 shall have a minimum tensile strength of 750 psi (5 MPa) in both the longitudinal and transverse directions.

7.2 Chemical Resistance:

7.2.1 Chemical Resistance Requirements—The cured resin/ fabric tube matrix, with or without the calibration hose, shall be evaluated in a laminate form for qualification testing of long-term chemical exposure to a variety of chemical effluents and should be evaluated in a manner consistent with 6.4.1 of Specification D 5813. The specimens shall be capable of exposure to the solutions in Table 2 at a temperature of $73.4 \pm 3.6^{\circ}$ F (23 \pm 2°C), with a percentage retention of flexural modulus of elasticity of at least 80 % after one year exposure. Flexural properties, after exposure to the chemical solution(s), shall be based on dimensions of the specimens after exposure.

7.2.2 Chemical Resistance Procedures—The CIPP laminates should be constructed of identical fabric and resin components that will be used for anticipated in-field installations. The cured resin/fabric tube laminates, with or without the calibration hose should be exposed to the chemical agents in a manner consistent with Test Method D 543. The edges of the test coupons should be left exposed and not treated with resin, unless otherwise specified by the purchaser. The specimen thicknesses should be in the range of 0.125 to 0.25 in. (3.2 to 6.4 mm), with the sample dimensions suitable for preparing a minimum of five specimens for flexural testing as described in 8.1.4. Flexural properties after exposure to the chemical solutions should be based on the dimensions of the specimen after exposure.

7.2.2.1 For applications other than standard domestic sewerage, it is recommended that chemical resistance tests be conducted with actual samples of the fluid flowing in the pipe. These tests can also be accomplished by depositing CIPP test samples in the active pipe.

7.2.2.2 As required by the purchaser, additional chemical resistance requirements for the CIPP may be evaluated as described in 6.4 of Specification D 5813.

8. Recommended Inspection Practices

8.1 For each installation length designated by the purchaser in the purchase agreement, the preparation of CIPP samples is required from one or both of the following two methods:

8.1.1 The samples should be cut from a section of cured CIPP at an intermediate manhole or at the termination point that has been installed through a like diameter section of pipe or other tubular restraining means which has been held in place by a suitable heat sink, such as sandbags.

8.1.2 The sample should be fabricated from material taken from the fabric tube and the resin/catalyst system used, and cured in a clamped mold, placed in the downtube when heated circulated water is used, and in the silencer when steam is used. When the CIPP is constructed of oriented continuous or discontinuous fibers to enhance the physical properties of the CIPP, this method of sample preparation is recommended in order to allow testing in the axial (that is, along the length) and

TABLE 2 Minimum Chemical Resistance Require	ments for
Domestic Sanitary Sewer Applications	

Chemical Solution	Concentration, %
Nitric acid	1
Sulfuric acid	5
ASTM Fuel C ^A	100
Vegetable oil ^e	100
Detergent ^C	0.1
Soap ^C	0.1

^AIn accordance with Specification D 4814 ^BCottonseed, com, or mineral oil.

^CIn accordance with Test Method D 543.

Copyright by ASTM Int'l (all rights reserved);

Reproduction authorized per License Agreement with ALLAN CLARK (NU FLOW TECHNOLOGIES (2000) IN); Fri Feb 4 10:22:01 EST 2005

circumferential (that is, hoop) directions of the CIPP. This method is also recommended when large-diameter CIPP is installed that may otherwise not be prepared with a tubular restraint.

8.1.3 The CIPP samples for each of these cases should be large enough to provide a minimum of three specimens and a recommended five specimens for flexural testing and also for tensile testing for internal pressure applications. The flexural and tensile specimens should be prepared in a manner consistent with 8.3.1 of Specification D 5813. For flexural and tensile properties, the full wall thickness of the CIPP samples shall be tested. Any plastic coatings or other CIPP layers not included in the structural design of the CIPP may be carefully ground off of the specimens prior to testing. If the sample is irregular or distorted such that proper testing is inhibited, attempts shall be made to machine any wall thickness from the inside pipe face of the sample. Any machining of the outside pipe face of the sample shall be done carefully so as to minimize the removal of material from the outer structural wall of the sample. Individual specimens should be clearly marked for easy identification and retained until final disposition or CIPP acceptance, or both, has been given.

8.1.4 Short-Term Flexural (Bending) Properties-The initial tangent flexural modulus of elasticity and flexural stress should be measured for gravity and pressure pipe applications in accordance with Test Method D 790, Test Method I, Procedure A and should meet the requirements of Table 1 within the 16:1 length to depth constraints. For specimens greater than 0.5 in. (12.7 mm) in depth, the width-to-depth ratio of the specimen should be increased to a minimum of 1:1 and should not exceed 4:1. For samples prepared in accordance with 8.1.1, determine flexural properties in the axial direction where the length of the test specimen is cut along the longitudinal axis of the pipe. Special consideration should be given to the preparation of flexural specimens to ensure opposite sides are parallel and adjacent edges are perpendicular. Flexural specimens should be tested such that the inside pipe face is tested in tension and the outside pipe face is in compression.

8.1.4.1 Fiber-Reinforced CIPP Flexural Properties— Where the CIPP is reinforced with oriented continuous or discontinuous fibers to enhance the physical properties of the CIPP, specimens should be sampled in accordance with 8.1.2, and flexural properties should be determined in accordance with 8.1.3 along the longitudinal axis and circumferential axis of the installed CIPP.

8.1.5 Short-Term Tensile Properties—The tensile strength should be measured for pressure pipe applications in accordance with Test Method D 638. Specimens should be prepared in accordance with Types I, II, and III of Fig. 1 of Test Method D 638. Specimens greater than 0.55 in. (14 mm) thick should maintain all dimensions for a Type III specimen, except the thickness will be that of the CIPP sample obtained. The rate of specimen testing should be carried out in accordance with Table 1 of Test Method D 638. Specimens should be prepared in accordance with 8.1.1 and tested along the longitudinal axis of the installed CIPP.

8.1.5.1 Fiber-Reinforced CIPP Tensile Testing—Where the CIPP is reinforced with oriented continuous or discontinuous

fibers to enhance the physical properties of the CIPP, specimens should be sampled in accordance with 8.1.2 and tensile properties should be determined in accordance with Test Method D 3039 and tested along the longitudinal axis and circumferential axis of the installed CIPP.

8.1.6 CIPP Wall Thickness-The method of obtaining CIPP wall thickness measurements should be determined in a manner consistent with 8.1.2 of Specification D 5813. Thickness measurements should be made in accordance with Practice D 3567 for samples prepared in accordance with 8.1. Make a minimum of eight measurements at evenly spaced intervals around the circumference of the sample to ensure that minimum and maximum thicknesses have been determined. Deduct from the measured values the thickness of any plastic coatings or CIPP layers not included in the structural design of the CIPP. The average thickness should be calculated using all measured values and shall meet or exceed minimum design thickness as agreed upon between purchaser and seller. The minimum wall thickness at any point shall not be less than 87.5 % of the specified design thickness as agreed upon between purchaser and seller.

8.2 Gravity Pipe Leakage Testing-If required by the owner in the contract documents or purchase order, gravity pipes should be tested using an exfiltration test method where the CIPP is plugged at both ends and filled with water. This test should take place after the CIPP has cooled down to ambient temperature. This test is limited to pipe lengths with no service laterals and diameters of 36 in. or less. The allowable water exfiltration for any length of pipe between termination points should not exceed 50 U.S. gallons per inch of internal pipe diameter per mile per day, providing that all air has been bled from the line. During exfiltration testing, the maximum internal pipe pressure at the lowest end should not exceed 10 ft (3.0 m) of water or 4.3 psi (29.7 kPa), and the water level inside of the inversion standpipe should be 2 ft (0.6 m) higher than the top of the pipe or 2 ft (0.6 m) higher than groundwater level, whichever is greater. The leakage quantity should be gaged by the water level in a temporary standpipe placed in the upstream plug. The test should be conducted for a minimum of 1 h.

Note 4—It is impractical to test pipes above 36 in. diameter for leakage due to the technology available in the pipe rehabilitation industry. Post inspection of larger pipes will detect major leaks or blockages.

8.3 Pressure Pipe Testing—If required by the purchaser in the purchase agreement, pressure pipes should be subjected to a hydrostatic pressure test. A pressure and leakage test at twice the known working pressure or at the working pressure plus 50 psi, whichever is less, is recommended. The pressure should initially be held at the known working pressure for a period not less than 12 h, then increased to the test pressure for an additional period of 2 to 3 h to allow for stabilization of the CIPP. After this period, the pressure test will begin for a minimum of 1 h. The allowable leakage during the pressure test should be 20 U.S. gallons per inch of internal pipe diameter per mile per day, providing that all air has been evacuated from the line prior to testing and the CIPP has cooled down to ambient temperature.

Note 5—The allowable leakage for gravity and pressure pipe testing is a function of water loss at the end seals and trapped air in the pipe.

Copyright by ASTM Int'l (all rights reserved);

Reproduction authorized per License Agreement with ALLAN CLARK (NU FLOW TECHNOLOGIES (2000) IN); Fri Feb 4 10:22:01 EST 2005

🕮 F 1743 – 96 (2003)

8.4 Delamination Test—If required by the purchaser in the purchase agreement, a delamination test should be performed on each installation length specified. CIPP samples should be prepared in accordance with 8.1.2, except that a portion of the fabric tube material in the sample should be dry and isolated from the resin in order to separate tube layers for testing (consult the tube manufacturer for further information). Delamination testing should be in accordance with Test Method D 903 with the following exceptions:

8.4.1 The rate of travel of the power-actuated grip should be 1 in. (25 mm)/min.

8.4.2 Five test specimens should be tested for each installation specified.

8.4.3 The thickness of the test specimen should be minimized, but should be sufficient to adequately test delamination of nonhomogeneous CIPP layers.

8.5 The peel or stripping strength between any nonhomogeneous layers of the CIPP laminate should be a minimum of 10 lb/in. (178.60 g/mm) for typical CIPP applications. Note 6-The purchaser may designate the similar layers between which the delamination test will be conducted.

Note 7—For additional details on conducting the delamination test, contact the seller.

8.6 Inspection and Acceptance—The installation may be inspected visually if appropriate, or by closed-circuit television if visual inspection cannot be accomplished. Variations from true line and grade may be inherent because of the conditions of the original piping. No infiltration of groundwater should be observed. All service entrances should be accounted for and be unobstructed.

9. Keywords

9.1 cured-in-place pipe; installation—underground; plastic pipe—thermoset; rehabilitation; thermosetting resin pipe

APPENDIX

(Nonmandatory Information)

X1. DESIGN CONSIDERATIONS

X1.1 General Guidelines—The design thickness of the CIPP is a function of the resin, materials of construction of the fabric tube, and the condition of the existing pipe. In addition, depending on the condition of the pipe, the design thickness of

the CIPP may also be a function of groundwater, soil type, and influence of live loading surrounding the host pipe. For guidance relating to terminology of piping conditions and related design equations, see Appendix X1 of Practice F 1216.

ASTM International takes no position respecting the validity of any patent rights asserted in connection with any item mentioned in this standard. Users of this standard are expressly advised that determination of the validity of any such patent rights, and the risk of infringement of such rights, are entirely their own responsibility.

This standard is subject to revision at any time by the responsible technical committee and must be reviewed every five years and if not revised, either reapproved or withdrawn. Your comments are invited either for revision of this standard or for additional standards and should be addressed to ASTM International Headquarters. Your comments will receive careful consideration at a meeting of the responsible technical committee, which you may attend. If you feel that your comments have not received a fair hearing you should make your views known to the ASTM Committee on Standards, at the address shown below.

This standard is copyrighted by ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959, United States. Individual reprints (single or multiple copies) of this standard may be obtained by contacting ASTM at the above address or at 610-832-9585 (phone), 610-832-9555 (fax), or service@astm.org (e-mail); or through the ASTM website (www.astm.org).

Copyright by ASTM Int'l (all rights reserved);

7

Reproduction authorized per License Agreement with ALLAN CLARK (NU FLOW TECHNOLOGIES (2000) IN); Fri Feb 4 10:22:01 EST 2005

Amendment to ASTM F1743-96 Author: Doug Kleweno of DGK Technologies

Douglas Kleweno 25124 235th Way SE Maple Valley, WA 93038-5905

May 22, 2001

Whom it may concern:

I am writing this letter at the request of Mr. David Ratliff (Nu Flow Installer, Abilene, Texas) in order to provide clarification for ASTM F1743 "Standard Practice for Rehabilitation of Existing Pipelines and Conduits by Pulled-in-Place Installation of Cured-In-Place Thermosetting Resin Pipe (CIPP)" and similar pulled-in-place products. In my previous position I was the Technical Manager for InLiner USA CIPP products and am the author of ASTM F1743. I have also been involved in editing ASTM F1216 and ASTM D5813, which are also CIPP installation and material specifications, respectively.

When writing an ASTM specification it is necessary to provide enough minimum requirements so that the product can meet or exceed engineering and design criteria. However, ASTM specifications also must be generalized enough to accommodate the majority of products and processes that may want to reference it. F1743 was generally written for most CIPP applications where heated cures predominate in the market. There are many resin applications for CIPP and other products (boat building, automotive, heavy truck) where ambient cure resin formulations are common and used successfully. Technically speaking, an ambient cure formulation for CIPP does initiate at a temperature less that 180F, which is recommended in Section 5.2.3 or F1743.

More critical to CIPP and other applications is whether the product (CIPP in this case) meets the minimum initial structural property recommendations. The minimum properties for the CIPP were provided in Section 4.2.3 of ASTM F1743 and this is probably the most important aspect for the product to meet the requirements for external hydrostatic or soil loading that may surround the pipe. These minimum properties are the numbers by which the minimum design thickness is determined for the installed CIPP or part liner.

As a side note it is my experience that the curing strategy is chosen for handling and transportation purposes. Large liners for CIPP require long catalyzed stability so the product can be processed, transported, and installed. For short runs or tubes processed at a job site, it was common to use ambient or semi-ambient cure formulations to reduce the time at the job site and the associated inconvenience to the surrounding community.

I hope this has provided some additional clarification.

Doug Kleweno (423) 413-8529

August 24, 2005

	TES	r REP	ORT
Send To:	NU FLOW TECHNOLOGIES 2000 INC. 1010 THORNTON ROAD SOUTH OSHAWA ON L1J 7E2 CANADA		
Customer:	Attn: MR. BOB FOWLE 1P790 NU FLOW TECHNOLOGIES 2000 INC. 1010 THORNTON ROAD SOUTH OSHAWA ON L1J 7E2 CANADA Attn: MR. BOB FOWLE	Plant:	1P790 NU FLOW TECHNOLOGIES 2000 INC. 1010 THORNTON ROAD SOUTH OSHAWA ON L1J 7E2 CANADA Attn: MR. BOB FOWLE
Sample [Negaription Ny Elevy #2000 Diss Listes - Liste		
Test Type Thank yo	Description: Nu Flow #2000 Pipe Lining - Liner AA - Annual Collection u for having your product tested by NSF.		
Test Type Thank yo The enclo be contact	e: AA - Annual Collection	formed on y maining issu	rour product. Your program representative will les concerning the status of this product. estions pertaining to your product.
Test Type Thank yo The enclo be contact	e: AA - Annual Collection u for having your product tested by NSF. osed report details the result of the testing per cting you in the near future if there are any ren o not hesitate to contact us if you have any in r:	<u>form</u> ed on y naining issu	
Test Type Thank you The enclo be contact Please d Reviewed CC: Progr Progr Regio	 AA - Annual Collection u for having your product tested by NSF. used report details the result of the testing percting you in the near future if there are any relived or not hesitate to contact us if you have any in Atabek Ciechanowski - Manager, Engineering Lab ram: 010 - Plumbing and Related Programs ram Rep: AMY CHOKSEY 	<u>form</u> ed on y naining issu	estions pertaining to your product.
Test Type Thank you The enclo be contact Please d Reviewer CC: Progr Progr Regic PA P;	a: AA - Annual Collection u for having your product tested by NSF. bsed report details the result of the testing per cting you in the near future if there are any relivered on the sitate to contact us if you have any in or not hesitate to contact us if you have any in r: Atabek Ciechanowski - Manager, Engineering Lab ram: 010 - Plumbing and Related Programs am Rep: AMY CHOKSEY on: 01 - Domestic roject: 224520	formed on y maining issu nmediate qu ioratory	estions pertaining to your product. Status: Pass

General Information

Standard: 014 - PLASTICS PIPING SYSTEM COMPONENTS AND RELATED MATERIALS

	DCC Number / Tracking ID PL04249		
	Family Code A		
	Material Type Epoxy		
	Monitor Code A		
	Performance Standard F1216		
	Performance Standard Year 2003		
	Product Identifier Part A Batch # 030904	Part B Batch # 040405_3	
	Sample Description Liner	_	
	Trade Designation Nu Flow #2000 Pipe L	ining	
Sample Id:	S-0000161582		<u>.</u>
Description:	Nu Flow #2000 Pipe Lining - Liner		
Sampled Date:	05/19/2005		
Received Date:	05/23/2005		
Testing Paralm el	ter Alter and the second s	Result	Vi au Units *
Engineering Lab	· · · · · · · · · · · · · · · · · · ·		
Gravity Pipe	Leakage Test		
Initial wate	er column:	10	feet
Final wate	er column:	10	feet
Time:		60	minutes
Leakage r	ate:	0	g/in/day
Required	maximum leakage rate:	50	g/in/day
Actual lea	kage rate:	0	g/in/day
	pe Leakage Test:	Pass	
Flex Modulus			
	s conditioned for	40	hours
<u>.</u>	s conditioned at	73	degrees F
Relative h	<u> </u>	50	%
	erature Required	73	degrees F
	erature Actual	73	degrees F
	crosshead speed	0.22	in/min
	sshead speed	0.22	in/min
Deflection			%
Specimen		280000	psi
Specimen		315000	psi
Specimen		275000	psi
Specimen		242000	psi
Specimen		257000	psi
	Average Modulus (minimum)	250000 psi	
	erage Modulus	274000	psi
Flex Modu Flexural Stre		PASS	
			hauro
	s conditioned for	40	hours
Relative H		73	degrees F
Test Tem		50	percent
Cross Hea		73	degrees F
	1 Flexural Strength	0.22	in/min.
	2 Flexural Strength	6280	psi
opecanen	-	6480	psi
Snanimon	3 Flexural Strength	6010	psi

FI20050824120213

J-00012414

Page 2 of 4

This report shall not be reproduced, except in its entirety, without the written approval of NSF. This report does not represent NSF Certification or authorization to use the NSF Mark. Authorization to use the NSF Mark is limited to products appearing in the Company's Official NSF Listing, (www.nsf.org). The results relate only to those items tested.

Original reports bear a light blue NSF Mark and border.

÷

esting Parameter	Result	Units - · · ·
ngineering Lab (Cont'd)		
Specimen 5 Flexural Strength	5820	psi
Average Flexural Strength	5960	psi
Required Flexural Strength	4500	psi
Flexural Strength Test	Pass	
Strength, Tensile		
Specimens conditioned for	40	hours
Specimens conditioned at	73	degrees F
Relative humidity	50	%
Test Temperature	73	degrees F
Actual Crosshead Speed	0.2	in/min.
Required Crosshead Speed	0.2	in/min.
Specimen 1: Tensile Strength	3930	psi
Specimen 2: Tensile Strength	4540	psi
Specimen 3: Tensile Strength	4010	psi
Specimen 4: Tensile Strength	3690	psi
Specimen 5: Tensile Strength	3920	psi
Req'd Average Tensile Strength (minimum)	3000	
Actual Average Tensile Strength	4020	psi
Tensile Strength Test	PASS	
Specimen Fabrication	· · · · · · · · · · · · · · · · · · ·	
Specimen Fabrication	COMPLETE	
Time	1	hours
Technician	3356	

J-00012414

Page 3 of 4

This report shall not be reproduced, except in its entirety, without the written approval of NSF. This report does not represent NSF Certification or authorization to use the NSF Mark. Authorization to use the NSF Mark is limited to products appearing in the Company's Official NSF Listing, (www.nsf.org). The results relate only to those items tested.

Page: 3

All work performed at:	ld	Address
	NSF_AA	NSF International
	_	789 Dixboro Road
		Ann Arbor MI 48105-0140
		USA

References to Testing Procedures;

NSF Reference	Parameter / Test Description
P3084	Gravity Pipe Leakage Test
P3122	Flex Modulus
P3123	Flexural Strength Test
P3127	Strength, Tensile
P3172	Specimen Fabrication

FI20050824120213 Final_Std

This report shall not be reproduced, except in its entirety, without the written approval of NSF. This report does not represent NSF Certification or authorization to use the NSF Mark. Authorization to use the NSF Mark is limited to products appearing in the Company's Official NSF Listing, (www.nsf.org). The results relate only to those items tested.

Original reports hear a light blue NSF Mark and border.

Page 4 of 4

Page: 4

2010 Triennial

P4319 Text Modification

NU FLOW TECHNOLOGIES 2000 INC. 1010 Thornton Road South Oshawa, Ontario L1J 7E2

Laboratory Report

Attention	Client's Order N	lumber Date	e	Report Number
Sinan Omari	9282	16 March	2007	07-845
Client's Material / Product Description (1) Sample		Date Sample Received	Mate	erial / Product Specification
		06 March 2007		ASTM D5813-04
Test Performed			Result	
1. Tangent Flexural Modu	lus			
(ASTM D790)				
 Crosshead speed 	l: 0.05"/min	Sample #		
 1000 lbf Load ce 	ell	1	384400	
 2 inch support sp 	oan	2	420900	250,000 psi
• L/D = 16		3	304600	Minimum
Specimen Geome	etry:	4	425400	
1/8" x 1/2" x 4"		<u>5</u>	<u>397100</u>	
 5 specimens test 	ed	Average	386500	
Units: psi				
2. Flexural Strength		Sample #		
(ASTM D790)		1	6 0 7 0	
 5 specimens test 	ed	2	6 670	
Units: psi		3	5 400	4,500 psi Minimum
		4	6 200	
		<u>5</u>	6 4 4 0	
		Average	6160	
3. Wall Thickness		C: J. A	Cid. D	
		Side A 3.56	Side B	
Units: mm		3.62	3.26 3.45	
Four measurement	nts taken on	3.67	3.45	
each side		3.79	3.74	

Telephone (905) 673-9899

Address 2421 Drew Road Mississauga, Ontario Canada L55 1A1

Facsimile (905) 673-8394

E-mail aahlawat@acuren.com

Web www.acuren.com

(0 Corrine Dimnik, B.Sc.

whole or in part, of the test or substance of this information shall reare only to the name of Acuren shall not be used in any manner in connection with the take, offenin or damage resulting directly or and product error, negligence or ensist report date. (v) Work which may progress beyond thirty-one (31) days in durati (v) Any test soutonuced ha an approved subcontractor are highlighted above (1) (v) Any test soutonuced has an approved subcontractor are highlighted above (1) and the source of the antiproved subcontractor are highlighted above (1) and the source of the antiproved subcontractor are highlighted above (1) and the source of the antiproved subcontractor are highlighted above (1) and the source of the antiproved subcontractor are highlighted above (1) and the source of the antiproved subcontractor are highlighted above (1) and the source of the antiproved subcontractor are highlighted above (1) and the source of the antiproved subcontractor are highlighted above (1) and the source of the antiproved subcontractor are highlighted above (1) and the source of the antiproved subcontractor are highlighted above (1) and the source of the antiproved subcontractor are highlighted above (1) and the source of the antiproved subcontractor are highlighted above (1) and the source of the antiproved subcontractor are highlighted above (1) and the source of the antiproved subcontractor are highlighted above (1) and the source of the antiproved subcontractor are highlighted above (1) and the source of the antiproved subcontractor are highlighted above (1) and the source of the antiproved subcontractor are highlighted above (1) and the source of the antiproved subcontractor are highlighted above (1) and the source of the antiproved subcontractor are highlighted above (1) and the source of the source of

Certified Inspector.

() The in whole or in part, of th name of Acuren shall n or damage

Dr. Erhan Ulvan, Ph. D, P. Eng.,

(m)

Laboratory Manager.

Page:

(iv) Un

with the sale, offering or

e (")

http://www.floridabuilding.org/Upload/Modifications/Rendered/Mod_4319_Text_CIPP Testing_1.png

Flow Comparisons

Comparison between a new pipe and a rehabilitated pipe

Diam	leter	Hazen Williams	Flow for new pipe	Thickness of Liner (mm)	Resulting internal	Hazen Williams	Flow for rehabilitated	% Loss
(m)	(in)	Coefficient (C)	(m ³ /s)		diameter (m)	coefficient (C)	pipe (m ³ /s)	
0.15	6	140	0.27	2	0.146	140	0.25	-6.86
0.20	8	140	0.57	2	0.196	140	0.54	-5.17
0.30	10	140	1.02	2	0.246	140	0.98	-4.15
0.40	12	140	1.65	2.5	0.295	140	1.57	-4.32

Comparison between old pipe and a rehabilitated pipe

Old Pipe Diameter		Flow for old pipe (m ³ /s)	Thickness of Liner (mm)	Old Pipe diameter (m)	Hazen Williams coefficient (C)	Flow for rehabilitated pipe (m ³ /s)	% Increase
(m) (in)		((
0.13 6	60	0.08	2	0.146	140	0.25	216.63
0.18 8	60	0.18	2	0.196	140	0.54	191.91
0.23 10	60	0.35	2	0.246	140	0.98	178.48
0.27 12	60	0.53	2.5	0.295	140	1.57	194.52

Related Modifications

702.1, 702.2, 702.3, 1102.1, 1102.2, 1102.3

Summary of Modification

Modify the current building materials list to include Cure-In Place (CIPP) Thermosetting Resin Conduit Liner that meets ASTM F-1743, ASTM F-1216, ASTM D790, ASTM D638 and ASTM D543. in sections 702.1,702.2, 702.3, 1102.1, 1102.2, 1102.3 and 1102.4 for building drains and building sewer pipes.

Rationale

CIPP liners are an alternative to traditional pipe replacement that increases the flow charicteristics of the pipe.

Fiscal Impact Statement

Impact to local entity relative to enforcement of code

There are no additional costs relative to enforcement compared to traditional replacement.

Impact to building and property owners relative to cost of compliance with code

There is a significant cost savings to building and property owners as well as reducing potentially hazardous materials left undisturbed as compared to traditional pipe replacement CIPP liners are seamless and jointless, reducing the number of potential failures.

Impact to industry relative to the cost of compliance with code

There is no impact to the industry relative to the cost of compliance with code.

Requirements

Has a reasonable and substantial connection with the health, safety, and welfare of the general public

CIPP lining eliminates the destruction of landscapes and property as well as the health dangers associated with removing of sewer pipes in need of repair.

Strengthens or improves the code, and provides equivalent or better products, methods, or systems of construction

CIPP liners provide a repair solution that allows drain, waste and sewer pipes to be repaired without the digging and destruction required for traditional pipe repairs or replacement.

Does not discriminate against materials, products, methods, or systems of construction of demonstrated capabilities CIPP lining can be installed in any type of host pipe used for Building drains and Building sewer pipes for residential, commercial

and industrial applications.

Does not degrade the effectiveness of the code

CIPP lining does not degrade the effectiveness of the code.

SECTION 702 MATERIALS

P4321 Text Modification

702.1 Above-ground sanitary drainage and vent pipe. Above-ground soil, waste and vent pipe shall conform to one of the standards listed in Table 702.1.

TABLE 702.1 ABOVE-GROUND DRAINAGE AND VENT PIPE

MATERIAL	STANDARD
Acrylonitrile butadiene styrene (ABS) plastic pipe in IPS diameters, including Schedule 40, DR 22 (PS 200) and DR 24 (PS 140); with a solid, cellular core or composite wall	
Brass pipe	ASTM B 43
Cast-iron pipe	ASTM A 74; ASTM A 888; CISPI 301
Copper or copper-alloy pipe	ASTM B 42; ASTM B 302
Copper or copper-alloy tubing (Type K, L, M or DWV)	ASTM B 75; ASTM B 88; ASTM B 251; ASTM B 306
Galvanized steel pipe	ASTM A 53
Glass pipe	ASTM C 1053
Polyolefin pipe	ASTM F 1412; CAN/CSA B181.3
Polyvinyl chloride (PVC) plastic pipe in IPS diameters, including schedule 40, DR 22 (PS 200), and DR 24 (PS 140); with a solid, cellular core or composite wall	ASTM D 2665; ASTM F 891; ASTM F 1488; CSA B181.2
Polyvinyl chloride (PVC) plastic pipe with a 3.25-inch O.D. and a solid, cellular core or composite wall	ASTM D 2949, ASTM F 1488
Polyvinylidene fluoride (PVDF) plastic pipe	ASTM F 1673; CAN/CSA B181.3
Stainless steel drainage systems, Types 304 and 316L	ASME A112.
Cured-In Place Thermosetting Resin Conduit Liner (CIPP)	<u>ASTM F1743, ASTM F1216, ASTM</u> <u>D790, ASTM D638, ASTM D543</u>

Designation: F 1743 - 96 (Reapproved 2003)

An American National Standard

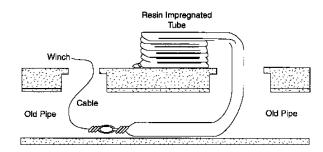
Standard Practice for Rehabilitation of Existing Pipelines and Conduits by Pulledin-Place Installation of Cured-in-Place Thermosetting Resin Pipe (CIPP)¹

This standard is issued under the fixed designation F 1743; the number immediately following the designation indicates the year of original adoption or, in the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. A superscript epsilon (ϵ) indicates an editorial change since the last revision or reapproval.

1. Scope

1.1 This practice describes the procedures for the reconstruction of pipelines and conduits (4 to 96 in. (10 to 244 cm) diameter) by the pulled-in-place installation of a resinimpregnated, flexible fabric tube into an existing conduit and secondarily inflated through the inversion of a calibration hose by the use of a hydrostatic head or air pressure (see Fig. 1). The resin is cured by circulating hot water or by the introduction of controlled steam into the tube. When cured, the finished cured-in-place pipe will be continuous and tight fitting. This reconstruction process may be used in a variety of gravity and pressure applications such as sanitary sewers, storm sewers, process piping, electrical conduits, and ventilation systems.

1.2 The values stated in inch-pound units are to be regarded as the standard. The values given in parentheses are for informational purposes only.


Note 1—There are no ISO standards covering the primary subject matter of this practice.

1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

2. Referenced Documents

2.1 ASTM Standards:

- D 543 Test Method of Resistance of Plastics to Chemical $\ensuremath{\mathsf{Reagents}}^2$
- D 638 Test Method for Tensile Properties of Plastics²
- D 790 Test Methods for Flexural Properties of Unreinforced and Reinforced Plastics and Electrical Insulating Materials²
- D 903 Test Method for Peel or Stripping Strength of Adhesive Bonds^3

Step 1 - Pull resin-impregnated tube into existing pipe.

Step 2 - Calibration hose inversion

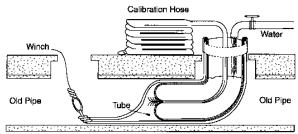


FIG. 1 Cured-in-Place Pipe Installation Methods

- D 1600 Terminology for Abbreviated Terms Relating to $\ensuremath{\text{Plastics}}^2$
- D 1682 Test Method for Breaking Load and Elongation of Textile ${\rm Fabrics}^4$
- D 3039/D3039M Test Method for Tensile Properties of Polymer Matrix Composite Materials⁵

⁴ Discontinued: See 1991 Annual Book of ASTM Standards, Vol 07.01. ⁵ Annual Book of ASTM Standards, Vol 15.03.

Copyright © ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959, United States.

1

Copyright by ASTM Int'l (all rights reserved); Reproduction authorized per License Agreement with ALLAN CLARK (NU FLOW TECHNOLOGIES (2000) IN); Fri Feb 4 10:22:01 EST 2005

2010 Triennial

¹ This practice is under the jurisdiction of ASTM Committee F-17 on Plastic Piping Systems and is the direct responsibility of Subcommittee F17.67 on Trenchless Plastic Pipeline Technology.

Current edition approved Feb. 10, 2003. Published April 2003. Last previous edition approved in 1996 as F1743-96.

² Annual Book of ASTM Standards, Vol 08.01.

³ Annual Book of ASTM Standards, Vol 15.06.

- D 3567 Practice for Determining Dimensions of Reinforced Thermosetting Resin Pipe (RTRP) and Fittings⁶
- D 4814 Specification for Automotive Spark—Ignition Engine Fuel^7
- D 5813 Specification for Cured-in-Place Thermosetting Resin Sewer Pipe^6
- F 412 Terminology Relating to Plastic Piping Systems⁶
- F 1216 Practice for Rehabilitation of Existing Pipelines and Conduits by the Inversion and Curing of a Resin-Impregnated Tube⁶
- 2.2 AWWA Standard:
- M28 Manual on Cleaning and Lining Water Mains⁸
- 2.3 NASSCO Standard:
- Recommended Specifications for Sewer Collection System Rehabilitation⁹

Note 2—An ASTM specification for cured-in-place pipe materials appropriate for use in this practice is under preparation and will be referenced in this practice when published.

3. Terminology

3.1 *General*—Definitions are in accordance with Terminology F 412. Abbreviations are in accordance with Terminology D 1600, unless otherwise indicated.

3.2 Definitions of Terms Specific to This Standard:

3.2.1 *calibration hose*—an impermeable bladder which is inverted within the resin-impregnated fabric tube by hydrostatic head or air pressure and may optionally be removed or remain in place as a permanent part of the installed cured-in-place pipe as described in 5.2.2.

3.2.2 cured-in-place pipe (CIPP)—a hollow cylinder consisting of a fabric tube with cured (cross-linked) thermosetting resin. Interior or exterior plastic coatings, or both, may be included. The CIPP is formed within an existing pipe and takes the shape of and fits tightly to the pipe.

3.2.3 delamination-separation of layers of the CIPP.

3.2.4 *dry spot*—an area of fabric of the finished CIPP which is deficient or devoid of resin.

3.2.5 *fabric tube*—flexible needled felt, or equivalent, woven or nonwoven material(s), or both, formed into a tubular shape which during the installation process is saturated with resin and holds the resin in place during the installation and curing process.

3.2.6 *inversion*—the process of turning the calibration hose inside out by the use of water pressure or air pressure.

3.2.7 *lift*—a portion of the CIPP that is a departure from the existing conduit wall forming a section of reverse curvature in the CIPP.

4. Significance and Use

4.1 This practice is for use by designers and specifiers, regulatory agencies, owners, and inspection organizations who are involved in the rehabilitation of conduits through the use of

a resin-impregnated fabric tube pulled-in-place through an existing conduit and secondarily inflated through the inversion of a calibration hose. Modifications may be required for specific job conditions.

5. Recommended Materials and Manufacture

5.1 *General*—The resins, fabric tube, tube coatings, or other materials, such as the permanent calibration hose when combined as a composite structure, shall produce CIPP that meets the requirements of this specification.

5.2 *CIPP Wall Composition*—The wall shall consist of a plastic coated fabric tube filled with a thermosetting (cross-linked) resin, and if used, a filler.

5.2.1 Fabric Tube-The fabric tube should consist of one or more layers of flexible needled felt, or equivalent, woven or nonwoven material(s), or both, capable of carrying resin, withstanding installation pressures, and curing temperatures. The material(s) of construction should be able to stretch to fit irregular pipe sections and negotiate bends. Longitudinal and circumferential joints between multiple layers of fabric should be staggered so as not to overlap. The outside layer of the fabric tube should have an impermeable flexible coating(s) whose function is to contain the resin during and after fabric tube impregnation. The outer coating(s) must facilitate monitoring of resin saturation of the material(s) of construction of the fabric tube. The fabric tube should be fabricated to a size that, when installed, will tightly fit the internal circumference and the length of the original conduit. Allowance should be made for circumferential and longitudinal stretching of the fabric tube during installation. As required, the fabric tube should meet minimum tensile strength requirements in the longitudinal and transverse directions as specified in 7.1. All the material(s) of construction for the fabric tube should be compatible with the resin system used.

5.2.2 Calibration Hose:

5.2.2.1 *Removable Calibration Hose*—The removable calibration hose should consist of an impermeable plastic, or impermeable plastic coating(s) on flexible woven or nonwoven material(s), or both, that do not absorb resin and are capable of being removed from the CIPP.

5.2.2.2 Permanent Calibration Hose-The permanent calibration hose should consist of an impermeable plastic coating on a flexible needled felt or equivalent woven or nonwoven material(s), or both, that are capable of absorbing resin and are of a thickness to become fully saturated with resin. The calibration hose should be translucent to facilitate postinstallation inspection. The calibration hose should be fabricated to a size that, when installed, will tightly fit the internal circumference and the length of the resin saturated fabric tube. Once inverted, the calibration hose becomes part of the fabric tube, and once properly cured, should bond permanently with the fabric tube. The properties of the calibration hose should meet minimum tensile strength requirements in the longitudinal and transverse directions as specified in 7.1. All the material(s) of construction for the calibration hose should be compatible with the resin system used.

5.2.3 *Resin*—A chemically resistant isophthalic based polyester, or vinyl ester thermoset resin and catalyst system or an

Copyright by ASTM Int'l (all rights reserved);

2

Reproduction authorized per License Agreement with ALLAN CLARK (NU FLOW TECHNOLOGIES (2000) IN); Fri Feb 4 10:22:01 EST 2005

⁶ Annual Book of ASTM Standards, Vol 08.04.

⁷ Annual Book of ASTM Standards, Vol 05.03

⁸ Available from the American Water Works Association, 6666 W. Quincey Ave., Denver, CO 80235.

⁹ Available from the National Association of Sewer Service Companies, 101 Wymore Rd., Suite 501, Altamonte, FL 32714.

epoxy resin and hardener that is compatible with the installation process should be used. The resin should be able to cure in the presence of water and the initiation temperature for cure should be less than 180°F (82.2°C). The cured resin/fabric tube system, with or without the calibration hose, shall be expected to have as a minimum the initial structural properties given in Table 1. These physical properties should be determined in accordance with Section 8. The cured resin/fabric tube system, with or without the calibration hose, should meet the minimum chemical resistance requirements as specified in 7.2.

6. Installation Recommendations

6.1 Cleaning and Pre-Inspection:

6.1.1 Prior to entering access areas, such as manholes, and performing inspection or cleaning operations, an evaluation of the atmosphere to determine the presence of toxic or flammable vapors or lack of oxygen must be undertaken in accordance with local, state, or federal safety regulations.

6.1.2 *Cleaning of Pipeline*—All internal debris should be removed from the original pipeline. Gravity pipes should be cleaned with hydraulically powered equipment, high-velocity jet cleaners, or mechanically powered equipment in accordance with NASSCO Recommended Specifications for Sewer Collection System Rehabilitation. Pressure pipelines should be cleaned with cable attached devices or fluid propelled devices in accordance with AWWA M28.

6.1.3 Inspection of Pipelines—Inspection of pipelines should be performed by experienced personnel trained in locating breaks, obstacles, and service connections by closedcircuit television or man entry. The interior of the pipeline should be carefully inspected to determine the location of any conditions that may prevent proper installation of the impregnated tube, such as protruding service taps, collapsed or crushed pipe, and reductions in the cross-sectional area of more than 40 %. These conditions should be noted so that they can be corrected.

6.1.4 *Line Obstructions*—The original pipeline should be clear of obstructions such as solids, dropped joints, protruding service connections, crushed or collapsed pipe, and reductions in the cross-sectional area of more than 40 % that may hinder or prevent the installation of the resin-impregnated fabric tube. If inspection reveals an obstruction that cannot be removed by conventional sewer-cleaning equipment, then a point-repair excavation should be made to uncover and remove or repair the obstruction.

6.2 *Resin Impregnation*—The fabric tube should be totally impregnated with resin (wet-out) and run through a set of rollers separated by a space, calibrated under controlled conditions to ensure proper distribution of resin. The volume of

TABLE 1	CIPP	Initial	Structural	Pro	nerties ⁴
IADLL I		nnnai	Juddial	FIU	pernea

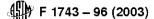
Property	Test Method –	Minimum Value		
Flopeity	Test Method -	psi	(MPa)	
Flexural strength	D 790	4 500	(31)	
Flexural modulus	D 790	250 000	(1724)	
Tensile strength (for pressure pipes only)	D 638	3 000	(21)	

^AThe values in Table 1 are for field inspection. The purchaser should consult the manufacturer for the long-term structural properties. resin used should be sufficient to fully saturate all the voids of the fabric tube material, as well as all resin-absorbing material of the calibration hose at nominal thickness and diameter. The volume should be adjusted by adding 3 to 15 % excess resin to allow for the change in resin volume due to polymerization, the change in resin volume due to thermal expansion or contraction, and resin migration through the perforations of the fabric tube and out onto the host pipe.

6.3 *Bypassing*—If bypassing of the flow is required around the sections of pipe designated for reconstruction, the bypass should be made by plugging the line at a point upstream of the pipe to be reconstructed and pumping the flow to a downstream point or adjacent system. The pump and bypass lines should be of adequate capacity and size to handle the flow. Services within this reach will be temporarily out of service.

6.3.1 Public advisory services shall notify all parties whose service laterals will be out of commission and advise against water usage until the main line is back in service.

6.4 Installation Methods:


6.4.1 Perforation of Resin-Impregnated Tube—Prior to pulling the resin-impregnated fabric tube in place, the outer impermeable plastic coating may optionally be perforated. When the resin-impregnated fabric tube is perforated, this should allow resin to be forced through the perforations and out against the existing conduit by the force of the hydrostatic head or air pressure against the inner wall of the calibration hose. The perforation should be done after fabric tube impregnation with a perforating roller device at the point of manufacture or at the jobsite. Perforations should be made on both sides of the lay-flat fabric tube covering the full circumference with a spacing no less than 1.5 in. (38.1 mm) apart. Perforating slits should be a minimum of 0.25 in. (6.4 mm) long.

6.4.2 Pulling Resin-Impregnated Tube into Position-The wet-out fabric tube should be pulled into place using a power winch. The saturated fabric tube should be pulled through an existing manhole or other approved access to fully extend to the next designated manhole or termination point. Care should be exercised not to damage the tube as a result of friction during pull-in, especially where curvilinear alignments, multilinear alignments, multiple offsets, protruding services, and other friction-producing host pipe conditions are present. Once the fabric tube is in place, it should be attached to a vertical standpipe so that the calibration hose can invert into the center of the resin-impregnated fabric tube. The vertical standpipe should be of sufficient height of water head to hold the fabric tube tight to the existing pipe wall, producing dimples at side connections. A device such as a dynamometer or load cell should be provided on the winch or cable to monitor the pulling force. Measure the overall elongation of the fabric tube after pull-in completion. The acceptable longitudinal elongation shall not be more than 5 % of the overall length measured after the calibration hose has been installed, or exceed the recommended pulling force.

6.4.3 Hydrostatic Head Calibration Hose Inversion—The calibration hose should be inserted into the vertical inversion standpipe, with the impermeable plastic membrane side out. At the lower end of the inversion standpipe, the calibration hose should be turned inside out and attached to the standpipe so

3

Copyright by ASTM Int'l (all rights reserved); Reproduction authorized per License Agreement with ALLAN CLARK (NU FLOW TECHNOLOGIES (2000) IN); Fri Feb 4 10:22:01 EST 2005

that a leakproof seal is created. The resin-impregnated fabric tube should also be attached to the standpipe so that the calibration hose can invert into the center of the resinimpregnated tube. The inversion head should be adjusted to be of sufficient height of water head to cause the calibration hose to invert from the initial point of inversion to the point of termination and hold the resin-impregnated fabric tube tight to the pipe wall, producing dimples at side connections. Care should be taken during the inversion so as not to overstress the felt fiber. At the request of the purchaser, the fabric tube manufacturer should provide information on the maximum allowable axial and longitudinal tensile stress for the fabric tube.

6.4.3.1 An alternative method of installation is top inversion. In this case, the calibration hose and resin-impregnated fabric tube are attached to a top ring. In this case, the tube itself forms the standpipe for generation of the hydrostatic head. Other methods of installation are also available and should be submitted for acceptance by the purchaser.

6.4.4 Using Air Pressure-The resin-impregnated fabric tube should be perforated as described in 6.4.1. Once perforated, the wet-out fabric tube should be pulled into place using a power winch as described in 6.4.2. The calibration hose should be inserted through the guide chute or tube of the pressure containment device in which the calibration hose has been loaded, with the impermeable plastic membrane side out. At the end of the guide chute, the calibration hose should be turned inside out and attached so that a leakproof seal is created. The resin-impregnated tube should also be attached to the guide chute so that the calibration hose can invert into the center of the resin-impregnated tube. The inversion air pressure should be adjusted to be of sufficient pressure to cause the calibration hose to invert from point of inversion to point of termination and hold the resin saturated fabric tube tight to the pipe wall, producing dimples at side connections. Care should be taken during the inversion so as not to overstress the woven and nonwoven materials. Take suitable precautions to eliminate hazards to personnel in the proximity of the construction when pressurized air is being used.

6.5 Lubricant During Installation—The use of a lubricant during installation is recommended to reduce friction during inversion. This lubricant should be poured into the fluid in the standpipe in order to coat the calibration hose during inversion. When air is used to invert the calibration hose, the lubricant should be applied directly to the calibration hose. The lubricant used should be a nontoxic, oil-based product that has no detrimental effects on the tube or boiler and pump system, and will not adversely affect the fluid to be transported.

6.6 Curing:

6.6.1 Using Circulating Heated Water—After installation is completed, suitable heat source and water recirculation equipment are required to circulate heated water throughout the section to uniformly raise the water temperature above the temperature required to effect a cure of the resin. The water temperature in the line during the cure period should be as recommended by the resin manufacturer or seller.

6.6.1.1 The heat source should be fitted with suitable monitors to measure the temperature of the incoming and

outgoing water supply. Temperature sensors should also be placed between the resin-impregnated tube and the host pipe invert at both termination points to monitor the temperatures during cure.

6.6.1.2 Initial cure will occur during temperature heat-up and is completed when exposed portions of the CIPP appear to be hard and sound and the remote temperature sensor indicates that the temperature is of a magnitude to realize an exotherm or cure in the resin. After initial cure is reached, the temperature should be raised to the post-cure temperature and held there for a period recommended by the resin manufacturer or seller. During post-cure, the recirculation of the water and cycling of the boiler to maintain the temperature continues. The curing of the CIPP must take into account the existing pipe material, the resin system, and ground conditions (temperature, moisture level, and thermal conductivity of soil).

6.6.2 Using Steam—After installation is completed, suitable steam-generating equipment is required to distribute steam throughout the pipe. The equipment should be capable of delivering steam throughout the section to uniformly raise the temperature within the pipe above the temperature required to effect a cure of the resin. The temperature in the line during the cure period should be as recommended by the resin manufacturer or seller.

6.6.2.1 The steam-generating equipment should be fitted with a suitable monitor to measure the temperature of the outgoing steam. Temperature sensors should also be placed between the resin-impregnated tube and the host pipe invert at both termination points to monitor the temperatures during cure.

6.6.2.2 Initial cure will occur during temperature heat-up and is completed when exposed portions of the new pipe appear to be hard and sound and the remote temperature sensor indicates that the temperature is of a magnitude to realize an exotherm or cure in the resin. After initial cure is reached, the temperature should be raised to the post-cure temperature and held there for a period recommended by the resin manufacturer or seller, during which time the distribution and control of steam to maintain the temperature continues. The curing of the CIPP must take into account the existing pipe material, the resin system, and ground conditions (temperature, moisture level, and thermal conductivity of soil).

6.6.3 *Required Pressures*—As required by the purchase agreement, the estimated maximum and minimum pressure required to hold the flexible tube tight against the existing conduit during the curing process should be provided by the seller and shall be increased to include consideration of external ground water, if present. Once the cure has started and dimpling for laterals is completed, the required pressures should be maintained until the cure has been completed. For water or steam, the pressure should be maintained within the estimated maximum and minimum pressure during the curing process. If the steam pressure or hydrostatic head drops below the recommended minimum during the cure, the CIPP should be inspected for lifts or delaminations and evaluated for its ability to fully meet the applicable requirements of 6.8 and Section 8.

6.7 Cool-Down:

Copyright by ASTM Int'l (all rights reserved);

Reproduction authorized per License Agreement with ALLAN CLARK (NU FLOW TECHNOLOGIES (2000) IN); Fri Feb 4 10:22:01 EST 2005

P4321 Text Modification

6.7.1 Using Cool Water after Heated Water Cure—The new CIPP should be cooled to a temperature below 100°F (38°C) before relieving the static head in the inversion standpipe. Cool-down may be accomplished by the introduction of cool water into the inversion standpipe to replace water being drained from a small hole made in the downstream end. Take care to cool down the CIPP in a controlled manner, as recommended by the resin manufacturer or the seller. Care should be taken to release the static head so that a vacuum will not be developed that could damage the newly installed CIPP.

6.7.2 Using Cool Water after Steam Cure—The new CIPP should be cooled to a temperature below 100°F (38°C) before relieving the internal pressure within the section. Cool-down may be accomplished by the introduction of cool water into the section to replace the mixture of air and steam being drained from a small hole made in the downstream end. Take care to cool the CIPP in a controlled manner as recommended by the resin manufacturer or the seller. Care should be taken to release the air pressure so that a vacuum will not be developed that could damage the newly installed CIPP.

6.8 Workmanship—The finished CIPP should be continuous over the entire length of an installation and be free of dry spots, lifts, and delaminations. If these conditions are present, the CIPP will be evaluated for its ability to meet the applicable requirements of Section 8. Where the CIPP does not meet the requirements of Section 8 or specifically stated requirements of the purchase agreement, or both, the affected portions of CIPP will be removed and replaced with an equivalent repair.

6.8.1 If the CIPP does not fit tightly against the original pipe at its termination point(s), the full circumference of the CIPP exiting the existing host pipe or conduit should be sealed by filling with a resin mixture compatible with the CIPP.

6.9 Service Connections—After the new CIPP has been installed, the existing active (or inactive) service connections should be reinstated. This should generally be done without excavation, and in the case of non-man entry pipes, from the interior of the pipeline by means of a television camera and a remote-control cutting device. Service connections shall be reinstated to at least 90 % of the original area as it enters the host pipe or conduit.

Note 3—In many cases, a seal is provided where the formed CIPP dimples at service connections. However, this practice should not be construed to provide a 100 % watertight seal at all service connections. If total elimination of infiltration and inflow is desired, other means, which are beyond the scope of this practice, may be necessary to seal service connections and to rehabilitate service lines and manholes.

7. Material Requirements

7.1 *Fabric Tube Strength*—If required by the purchaser in the purchase agreement, the fabric tube, and seam (if applicable) as a quality control test, when tested in accordance with Test Method D 1682 shall have a minimum tensile strength of 750 psi (5 MPa) in both the longitudinal and transverse directions.

7.2 Chemical Resistance:

7.2.1 Chemical Resistance Requirements—The cured resin/ fabric tube matrix, with or without the calibration hose, shall be evaluated in a laminate form for qualification testing of long-term chemical exposure to a variety of chemical effluents and should be evaluated in a manner consistent with 6.4.1 of Specification D 5813. The specimens shall be capable of exposure to the solutions in Table 2 at a temperature of $73.4 \pm 3.6^{\circ}$ F (23 \pm 2°C), with a percentage retention of flexural modulus of elasticity of at least 80 % after one year exposure. Flexural properties, after exposure to the chemical solution(s), shall be based on dimensions of the specimens after exposure.

7.2.2 Chemical Resistance Procedures—The CIPP laminates should be constructed of identical fabric and resin components that will be used for anticipated in-field installations. The cured resin/fabric tube laminates, with or without the calibration hose should be exposed to the chemical agents in a manner consistent with Test Method D 543. The edges of the test coupons should be left exposed and not treated with resin, unless otherwise specified by the purchaser. The specimen thicknesses should be in the range of 0.125 to 0.25 in. (3.2 to 6.4 mm), with the sample dimensions suitable for preparing a minimum of five specimens for flexural testing as described in 8.1.4. Flexural properties after exposure to the chemical solutions should be based on the dimensions of the specimen after exposure.

7.2.2.1 For applications other than standard domestic sewerage, it is recommended that chemical resistance tests be conducted with actual samples of the fluid flowing in the pipe. These tests can also be accomplished by depositing CIPP test samples in the active pipe.

7.2.2.2 As required by the purchaser, additional chemical resistance requirements for the CIPP may be evaluated as described in 6.4 of Specification D 5813.

8. Recommended Inspection Practices

8.1 For each installation length designated by the purchaser in the purchase agreement, the preparation of CIPP samples is required from one or both of the following two methods:

8.1.1 The samples should be cut from a section of cured CIPP at an intermediate manhole or at the termination point that has been installed through a like diameter section of pipe or other tubular restraining means which has been held in place by a suitable heat sink, such as sandbags.

8.1.2 The sample should be fabricated from material taken from the fabric tube and the resin/catalyst system used, and cured in a clamped mold, placed in the downtube when heated circulated water is used, and in the silencer when steam is used. When the CIPP is constructed of oriented continuous or discontinuous fibers to enhance the physical properties of the CIPP, this method of sample preparation is recommended in order to allow testing in the axial (that is, along the length) and

TABLE 2	linimum Chemical Resistance Requirements for	
1	Domestic Sanitary Sewer Applications	

/	11
Chemical Solution	Concentration, %
Nitric acid	1
Sulfuric acid	5
ASTM Fuel C ^A	100
Vegetable oil ^ø	100
Detergent ^C	0.1
Soap ^č	0.1

^AIn accordance with Specification D 4814 ^BCottonseed, com, or mineral oil.

^CIn accordance with Test Method D 543.

Copyright by ASTM Int'l (all rights reserved);

Reproduction authorized per License Agreement with ALLAN CLARK (NU FLOW TECHNOLOGIES (2000) IN); Fri Feb 4 10:22:01 EST 2005

circumferential (that is, hoop) directions of the CIPP. This method is also recommended when large-diameter CIPP is installed that may otherwise not be prepared with a tubular restraint.

8.1.3 The CIPP samples for each of these cases should be large enough to provide a minimum of three specimens and a recommended five specimens for flexural testing and also for tensile testing for internal pressure applications. The flexural and tensile specimens should be prepared in a manner consistent with 8.3.1 of Specification D 5813. For flexural and tensile properties, the full wall thickness of the CIPP samples shall be tested. Any plastic coatings or other CIPP layers not included in the structural design of the CIPP may be carefully ground off of the specimens prior to testing. If the sample is irregular or distorted such that proper testing is inhibited, attempts shall be made to machine any wall thickness from the inside pipe face of the sample. Any machining of the outside pipe face of the sample shall be done carefully so as to minimize the removal of material from the outer structural wall of the sample. Individual specimens should be clearly marked for easy identification and retained until final disposition or CIPP acceptance, or both, has been given.

8.1.4 Short-Term Flexural (Bending) Properties-The initial tangent flexural modulus of elasticity and flexural stress should be measured for gravity and pressure pipe applications in accordance with Test Method D 790, Test Method I, Procedure A and should meet the requirements of Table 1 within the 16:1 length to depth constraints. For specimens greater than 0.5 in. (12.7 mm) in depth, the width-to-depth ratio of the specimen should be increased to a minimum of 1:1 and should not exceed 4:1. For samples prepared in accordance with 8.1.1, determine flexural properties in the axial direction where the length of the test specimen is cut along the longitudinal axis of the pipe. Special consideration should be given to the preparation of flexural specimens to ensure opposite sides are parallel and adjacent edges are perpendicular. Flexural specimens should be tested such that the inside pipe face is tested in tension and the outside pipe face is in compression.

8.1.4.1 Fiber-Reinforced CIPP Flexural Properties— Where the CIPP is reinforced with oriented continuous or discontinuous fibers to enhance the physical properties of the CIPP, specimens should be sampled in accordance with 8.1.2, and flexural properties should be determined in accordance with 8.1.3 along the longitudinal axis and circumferential axis of the installed CIPP.

8.1.5 Short-Term Tensile Properties—The tensile strength should be measured for pressure pipe applications in accordance with Test Method D 638. Specimens should be prepared in accordance with Types I, II, and III of Fig. 1 of Test Method D 638. Specimens greater than 0.55 in. (14 mm) thick should maintain all dimensions for a Type III specimen, except the thickness will be that of the CIPP sample obtained. The rate of specimen testing should be carried out in accordance with Table 1 of Test Method D 638. Specimens should be prepared in accordance with 8.1.1 and tested along the longitudinal axis of the installed CIPP.

8.1.5.1 Fiber-Reinforced CIPP Tensile Testing—Where the CIPP is reinforced with oriented continuous or discontinuous

fibers to enhance the physical properties of the CIPP, specimens should be sampled in accordance with 8.1.2 and tensile properties should be determined in accordance with Test Method D 3039 and tested along the longitudinal axis and circumferential axis of the installed CIPP.

8.1.6 CIPP Wall Thickness-The method of obtaining CIPP wall thickness measurements should be determined in a manner consistent with 8.1.2 of Specification D 5813. Thickness measurements should be made in accordance with Practice D 3567 for samples prepared in accordance with 8.1. Make a minimum of eight measurements at evenly spaced intervals around the circumference of the sample to ensure that minimum and maximum thicknesses have been determined. Deduct from the measured values the thickness of any plastic coatings or CIPP layers not included in the structural design of the CIPP. The average thickness should be calculated using all measured values and shall meet or exceed minimum design thickness as agreed upon between purchaser and seller. The minimum wall thickness at any point shall not be less than 87.5 % of the specified design thickness as agreed upon between purchaser and seller.

8.2 Gravity Pipe Leakage Testing-If required by the owner in the contract documents or purchase order, gravity pipes should be tested using an exfiltration test method where the CIPP is plugged at both ends and filled with water. This test should take place after the CIPP has cooled down to ambient temperature. This test is limited to pipe lengths with no service laterals and diameters of 36 in. or less. The allowable water exfiltration for any length of pipe between termination points should not exceed 50 U.S. gallons per inch of internal pipe diameter per mile per day, providing that all air has been bled from the line. During exfiltration testing, the maximum internal pipe pressure at the lowest end should not exceed 10 ft (3.0 m) of water or 4.3 psi (29.7 kPa), and the water level inside of the inversion standpipe should be 2 ft (0.6 m) higher than the top of the pipe or 2 ft (0.6 m) higher than groundwater level, whichever is greater. The leakage quantity should be gaged by the water level in a temporary standpipe placed in the upstream plug. The test should be conducted for a minimum of 1 h.

Note 4—It is impractical to test pipes above 36 in. diameter for leakage due to the technology available in the pipe rehabilitation industry. Post inspection of larger pipes will detect major leaks or blockages.

8.3 Pressure Pipe Testing—If required by the purchaser in the purchase agreement, pressure pipes should be subjected to a hydrostatic pressure test. A pressure and leakage test at twice the known working pressure or at the working pressure plus 50 psi, whichever is less, is recommended. The pressure should initially be held at the known working pressure for a period not less than 12 h, then increased to the test pressure for an additional period of 2 to 3 h to allow for stabilization of the CIPP. After this period, the pressure test will begin for a minimum of 1 h. The allowable leakage during the pressure test should be 20 U.S. gallons per inch of internal pipe diameter per mile per day, providing that all air has been evacuated from the line prior to testing and the CIPP has cooled down to ambient temperature.

Note 5—The allowable leakage for gravity and pressure pipe testing is a function of water loss at the end seals and trapped air in the pipe.

Copyright by ASTM Int'l (all rights reserved);

Reproduction authorized per License Agreement with ALLAN CLARK (NU FLOW TECHNOLOGIES (2000) IN); Fri Feb 4 10:22:01 EST 2005

∰ F 1743 – 96 (2003)

8.4 Delamination Test—If required by the purchaser in the purchase agreement, a delamination test should be performed on each installation length specified. CIPP samples should be prepared in accordance with 8.1.2, except that a portion of the fabric tube material in the sample should be dry and isolated from the resin in order to separate tube layers for testing (consult the tube manufacturer for further information). Delamination testing should be in accordance with Test Method D 903 with the following exceptions:

8.4.1 The rate of travel of the power-actuated grip should be 1 in. (25 mm)/min.

8.4.2 Five test specimens should be tested for each installation specified.

8.4.3 The thickness of the test specimen should be minimized, but should be sufficient to adequately test delamination of nonhomogeneous CIPP layers.

8.5 The peel or stripping strength between any nonhomogeneous layers of the CIPP laminate should be a minimum of 10 lb/in. (178.60 g/mm) for typical CIPP applications. Note 6-The purchaser may designate the similar layers between which the delamination test will be conducted.

Note 7—For additional details on conducting the delamination test, contact the seller.

8.6 Inspection and Acceptance—The installation may be inspected visually if appropriate, or by closed-circuit television if visual inspection cannot be accomplished. Variations from true line and grade may be inherent because of the conditions of the original piping. No infiltration of groundwater should be observed. All service entrances should be accounted for and be unobstructed.

9. Keywords

9.1 cured-in-place pipe; installation—underground; plastic pipe—thermoset; rehabilitation; thermosetting resin pipe

APPENDIX

(Nonmandatory Information)

X1. DESIGN CONSIDERATIONS

X1.1 General Guidelines—The design thickness of the CIPP is a function of the resin, materials of construction of the fabric tube, and the condition of the existing pipe. In addition, depending on the condition of the pipe, the design thickness of

the CIPP may also be a function of groundwater, soil type, and influence of live loading surrounding the host pipe. For guidance relating to terminology of piping conditions and related design equations, see Appendix X1 of Practice F 1216.

ASTM International takes no position respecting the validity of any patent rights asserted in connection with any item mentioned in this standard. Users of this standard are expressly advised that determination of the validity of any such patent rights, and the risk of infringement of such rights, are entirely their own responsibility.

This standard is subject to revision at any time by the responsible technical committee and must be reviewed every five years and if not revised, either reapproved or withdrawn. Your comments are invited either for revision of this standard or for additional standards and should be addressed to ASTM International Headquarters. Your comments will receive careful consideration at a meeting of the responsible technical committee, which you may attend. If you feel that your comments have not received a fair hearing you should make your views known to the ASTM Committee on Standards, at the address shown below.

This standard is copyrighted by ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959, United States. Individual reprints (single or multiple copies) of this standard may be obtained by contacting ASTM at the above address or at 610-832-9585 (phone), 610-832-9555 (fax), or service@astm.org (e-mail); or through the ASTM website (www.astm.org).

Copyright by ASTM Int'l (all rights reserved);

7

Reproduction authorized per License Agreement with ALLAN CLARK (NU FLOW TECHNOLOGIES (2000) IN); Fri Feb 4 10:22:01 EST 2005

Amendment to ASTM F1743-96 Author: Doug Kleweno of DGK Technologies

Douglas Kleweno 25124 235th Way SE Maple Valley, WA 93038-5905

May 22, 2001

Whom it may concern:

I am writing this letter at the request of Mr. David Ratliff (Nu Flow Installer, Abilene, Texas) in order to provide clarification for ASTM F1743 "Standard Practice for Rehabilitation of Existing Pipelines and Conduits by Pulled-in-Place Installation of Cured-In-Place Thermosetting Resin Pipe (CIPP)" and similar pulled-in-place products. In my previous position I was the Technical Manager for InLiner USA CIPP products and am the author of ASTM F1743. I have also been involved in editing ASTM F1216 and ASTM D5813, which are also CIPP installation and material specifications, respectively.

When writing an ASTM specification it is necessary to provide enough minimum requirements so that the product can meet or exceed engineering and design criteria. However, ASTM specifications also must be generalized enough to accommodate the majority of products and processes that may want to reference it. F1743 was generally written for most CIPP applications where heated cures predominate in the market. There are many resin applications for CIPP and other products (boat building, automotive, heavy truck) where ambient cure resin formulations are common and used successfully. Technically speaking, an ambient cure formulation for CIPP does initiate at a temperature less that 180F, which is recommended in Section 5.2.3 or F1743.

More critical to CIPP and other applications is whether the product (CIPP in this case) meets the minimum initial structural property recommendations. The minimum properties for the CIPP were provided in Section 4.2.3 of ASTM F1743 and this is probably the most important aspect for the product to meet the requirements for external hydrostatic or soil loading that may surround the pipe. These minimum properties are the numbers by which the minimum design thickness is determined for the installed CIPP or part liner.

As a side note it is my experience that the curing strategy is chosen for handling and transportation purposes. Large liners for CIPP require long catalyzed stability so the product can be processed, transported, and installed. For short runs or tubes processed at a job site, it was common to use ambient or semi-ambient cure formulations to reduce the time at the job site and the associated inconvenience to the surrounding community.

I hope this has provided some additional clarification.

Doug Kleweno (423) 413-8529

August 24, 2005

	TES	REPORT	
Send To:	1P790 NU FLOW TECHNOLOGIES 2000 INC. 1010 THORNTON ROAD SOUTH OSHAWA ON L1J 7E2 CANADA Attn: MR. BOB FOWLE		
Customer:		Plant: 1P790 NU FLOW TECHNOLOGIES 2000 1010 THORNTON ROAD SOUTH OSHAWA ON L1J 7E2 CANADA Attn: MR. BOB FOWLE	INC.
Test Type Thank yo	Description: Nu Flow #2000 Pipe Lining - Line e: AA - Annual Collection u for having your product tested by NSF.	ormed on your product. Your program represe	entative will
Test Type Thank yo The enclo be contact	e: AA - Annual Collection u for having your product tested by NSF. osed report details the result of the testing pe cting you in the near future if there are any re	ormed on your product. Your program represe aining issues concerning the status of this pro nediate questions pertaining to your product.	entative will iduct.
Test Type Thank you The enclo be contac	e: AA - Annual Collection u for having your product tested by NSF. osed report details the result of the testing pe cting you in the near future if there are any re to not hesitate to contact us if you have any ir r:	nediate questions pertaining to your product. Status: Pass	entative will iduct.
Test Type Thank you The enclo be contact Please d Reviewed CC: Progr Progr Regio	e: AA - Annual Collection u for having your product tested by NSF. psed report details the result of the testing pe- cting you in the near future if there are any re o not hesitate to contact us if you have any ir r: <u>Ala</u> <u>C</u> <u>C</u> Atabek Ciechanowski - Manager, Engineering Lal ram: 010 - Plumbing and Related Programs ram Rep: AMY CHOKSEY	nediate questions pertaining to your product. Status: Pass	entative will iduct.
Test Type Thank you The enclo be contact Please d Reviewed CC: Progr Progr Regio PA Pr Fi2005082 This report Certificatio	a: AA - Annual Collection u for having your product tested by NSF. bsed report details the result of the testing pecting you in the near future if there are any restriction on the sitate to contact us if you have any introduct the site of the testing pecting. r: Atabek Ciechanowski - Manager, Engineering Lal ram: 010 - Plumbing and Related Programs ram Rep: AMY CHOKSEY on: on: 01 - Domestic roject: 224520 24120213 J- shall not be reproduced, except in its entirety, without to or authorization to use the NSF Mark. Authorization to SF Listing, (www.nsf.org). The results relate only to thos 789 N. Dixboro Road, A	nediate questions pertaining to your product. Status: Pass ratory 0012414 a written approval of NSF. This report does not represent use the NSF Mark is limited to products appearing in the	Page 1 of it NSF

General Information

Page: 2

	DCC Number / Tracking ID PL04249			
	Family Code A			
	Material Type Epoxy			
	Monitor Code A			
	Performance Standard F1216			
	Performance Standard Year 2003			
	Product Identifier Part A Batch # 0309	04 Part 8 Patch #	040405 3	
	Sample Description Liner	04, Fait Dibatoi #	040405_3	
	Trade Designation Nu Flow #2000 Pip	e Linina		
Sample Id:	S-0000161582			
Description:	Nu Flow #2000 Pipe Lining - Liner			
Sampled Date:	05/19/2005			
Received Date:	05/23/2005			
Festing Paralmet	er		Result	Units *
Engineering Lab				
Gravity Pipe	Leakage Test			
Initial wate			10	feet
Final wate	r column:		10	feet
Time:			60	minutes
Leakage r			0	g/in/day
	maximum leakage rate:		50	g/in/day
Actual lea				g/in/day
	pe Leakage Test:		Pass	
Flex Modulus				·····
	s conditioned for		40	hours
	s conditioned at		73	degrees F
Relative h			50	<u>%</u>
· · · · · · · · · · · · · · · · · · ·	erature Required		73	degrees F
	crosshead speed		73	in/min
	sshead speed		0.22	in/min
Deflection			0.22 <5	<u>%</u>
Specimen			280000	psi
Specimen			315000	psi
Specimen			275000	psi
Specimen			242000	psi
Specimen			257000	psi
	Average Modulus (minimum)			
	erage Modulus	,	274000	psi
Flex Modu		PASS		
Flexural Stre	ngth Test			
Specimen	s conditioned for	_	40	hours
Specimen	s conditioned at		73	degrees F
Relative H	umidity	•	50	percent
Test Tem	perature		73	degrees F
Cross Hea	d Speed		0.22	in/min.
Specimen	1 Flexural Strength		6280	psi
	2 Flexural Strength		6480	psi
	A Element Olementh		6010	psi
	3 Flexural Strength 4 Flexural Strength		0010	P31

FI20050824120213

J-00012414

Page 2 of 4

This report shall not be reproduced, except in its entirety, without the written approval of NSF. This report does not represent NSF Certification or authorization to use the NSF Mark. Authorization to use the NSF Mark is limited to products appearing in the Company's Official NSF Listing, (www.nsf.org). The results relate only to those items tested.

Original reports bear a light blue NSF Mark and border.

÷

esting Parameter	Result	Units	
ngineering Lab (Cont'd)			
Specimen 5 Flexural Strength	5820	psi	
Average Flexural Strength	5960	psi	
Required Flexural Strength	4500	psi	
Flexural Strength Test	Pass		
Strength, Tensile			
Specimens conditioned for	40	hours	
Specimens conditioned at	73	degrees F	
Relative humidity	50	%	
Test Temperature	73	degrees F	
Actual Crosshead Speed	0.2	in/min.	
Required Crosshead Speed	0.2	in/min.	
Specimen 1: Tensile Strength	3930	psi	
Specimen 2: Tensile Strength	4540	psi	
Specimen 3: Tensile Strength	4010	psi	
Specimen 4: Tensile Strength	3690	psi	
Specimen 5: Tensile Strength	3920	psi	
Req'd Average Tensile Strength (minimum)	3000		
Actual Average Tensile Strength	4020	psi	
Tensile Strength Test	PASS		
Specimen Fabrication			
Specimen Fabrication	COMPLETE		
Time	1	hours	
Technician	3356		

J-00012414

Page 3 of 4

This report shall not be reproduced, except in its entirety, without the written approval of NSF. This report does not represent NSF Certification or authorization to use the NSF Mark. Authorization to use the NSF Mark is limited to products appearing in the Company's Official NSF Listing, (www.nsf.org). The results relate only to those items tested.

Page: 3

	ld	Address
All work performed at:	→ NSF_AA	NSF International
		789 Dixboro Road
		Ann Arbor MI 48105-0140
		USA

References to Testing Procedures:

P4321 Text Modification

NSF Reference	Parameter / Test Description			
P3084	Gravity Pipe Leakage Test			
P3122	Flex Modulus			
P3123	Flexural Strength Test			
P3127	Strength, Tensile			
P3172	Specimen Fabrication			

FI20050824120213 Final_Std

This report shall not be reproduced, except in its entirety, without the written approval of NSF. This report does not represent NSF Certification or authorization to use the NSF Mark. Authorization to use the NSF Mark is limited to products appearing in the Company's Official NSF Listing, (www.nsf.org). The results relate only to those items tested.

Original reports hear a light blue NSF Mark and border.

Page 4 of 4

NU FLOW TECHNOLOGIES 2000 INC. 1010 Thornton Road South Oshawa, Ontario L1J 7E2

Laboratory Report

Attention	Client's Order Number	Date	Report Number		
Sinan Omari	9282	16 March 2007	07-845		
Client's Material / Product De	escription Date	Sample Received	Material / Product Specification		
(1) Sample	06	5 March 2007	ASTM D5813-04		
Test Performed		Resu	ılt		
1. <u>Tangent Flexural Modulus</u> (ASTM D790)					
Crosshead speed: 0.	05"/min Sam	nple #			
 1000 lbf Load cell 		1 3844			
 2 inch support span 		2 4209	230.000 DSI		
• L/D = 16		3 3046	Minimum		
 Specimen Geometry 	: · · · · · · · · · · · · · · · · · · ·	4 4254			
1/8" x 1/2" x 4"		<u>5</u> <u>3971</u>			
 5 specimens tested 	Av	erage 3865	00		
Units: psi					
2. Flexural Strength	Sam	ple #			
(ASTM D790)		1 607	0		
 5 specimens tested 		2 6 67	0		
Units: psi		3 5 40	0 4,500 psi Minimum		
		4 6 20	0		
		<u>5</u> <u>644</u>	<u>0</u>		
	Av	erage 616	0		
3. Wall Thickness	C:	4 - k	B		
		<u>de A</u> <u>Side</u> 5.56 3.26			
Units: mm		.50 5.20			
 Four measurements 	taken on	.67 3.50			
each side		.79 3.74			

Telephone (905) 673-9899

Address 2421 Drew Road Mississauga. Ontario Canada LSS 1A1

Facsimile (905) 673-8394

E-mail aahlawat@acuren.com

Web www.acuren.com

Coi Di

Corrine Dimnik, B.Sc. Certified Inspector.

Dr. Erhan Ulvan, Ph. D, P. Eng.,

Dr. Erhan Ulvan, Ph. D, P. Eng Laboratory Manager.

Labora

(i) The information provided by the services described here will relate only to the material tested. No representations will be made that somar materials or the bulk material will exhibit like properties. (ii) No publication in which or in part, of the test or substance of this information shall be made willowit the proverties consent of Acuren. Except as required by regulatory bodie, in which case the document must be submitted in its content, and the safe, offering or adverting of any article, product or service. (iii) No ethic acute in a materials or the bulk material will exhibit like properties. (i) No publication in or dance resulting of any article, product or service. (iv) Notice Acuren nor its employees shall be esponsible for any class, economic loss, high report date. (v) Work which may progress beyond thery-one (31) days in ducation may be internin invoiced for work performed up to the invoice date. Terms for interim and final invoices are net 30 days from date of invoice.

Page:

002/002

Flow Comparisons

Comparison between a new pipe and a rehabilitated pipe

Diam	leter	Hazen Williams	Flow for new pipe	Thickness of Liner (mm)	Resulting internal	Hazen Williams	Flow for rehabilitated	% Loss
(m)	(in)	Coefficient (C)	(m ³ /s)		diameter (m)	coefficient (C)	pipe (m ³ /s)	
0.15	6	140	0.27	2	0.146	140	0.25	-6.86
0.20	8	140	0.57	2	0.196	140	0.54	-5.17
0.30	10	140	1.02	2	0.246	140	0.98	-4.15
0.40	12	140	1.65	2.5	0.295	140	1.57	-4.32

Comparison between old pipe and a rehabilitated pipe

Old F Diam	· 1		Flow for old pipe (m ³ /s)	Thickness of Liner (mm)	Old Pipe diameter (m)	Hazen Williams coefficient (C)	Flow for rehabilitated pipe (m ³ /s)	% Increase
(m)	(in)							
0.13	6	60	0.08	2	0.146	140	0.25	216.63
0.18	8	60	0.18	2	0.196	140	0.54	191.91
0.23	10	60	0.35	2	0.246	140	0.98	178.48
0.27	12	60	0.53	2.5	0.295	140	1.57	194.52

Date Proposal Submitted	4/2/2010	Section	1107
Chapter	11	TAC Recommendation	Pending Review
Affects HVHZ	No	Commission Action	Pending Review
Proponent	scott waltz	General Comments	No
Attachments	No	Alternate Language	No

Related Modifications

Summary of Modification

1107.1 (Add) Secondary drain inlet shall be not less than 2 inches (51 mm) nor more than 4 inches (102 mm) above the finish roof covering and shall be located as close as practical to the required vertical leaders or downspouts.

Rationale

(emergency) to (overflow) is for consistency with FBC 1503.4.3. The new text is to require the secondary drains to truly function as a separate system as FPC 1107.2 intends. If the inlet is at the same elev. as that of the primary drains the discharge of storm water at the observable location required by FPC 1107.2 will not be a unique occurrence signaling that the primary drains are obstructed. The addition would be consistent with language in FBC1503.4.3 for overflow scuppers.

Fiscal Impact Statement

Impact to local entity relative to enforcement of code

Little if any. A similar provision was a part of 2001 Florida Building Code and still standard practice.

Impact to building and property owners relative to cost of compliance with code

Little if any. A similar provision was a part of 2001 Florida Building Code and still standard practice.

Impact to industry relative to the cost of compliance with code

Little if any. A similar provision was a part of 2001 Florida Building Code and still standard practice.

Requirements

Has a reasonable and substantial connection with the health, safety, and welfare of the general public The change would insure that secondary roof drains are properly installed and contribute to public safety.

- Strengthens or improves the code, and provides equivalent or better products, methods, or systems of construction It would strengthen and improve the code.
- Does not discriminate against materials, products, methods, or systems of construction of demonstrated capabilities I do not believe it discriminate against any materials, methods or systems.
- Does not degrade the effectiveness of the code

No.

SECTION 1107 SECONDARY (EMERGENCY OVERFLOW) ROOF DRAINS

1107.1 Secondary drainage required. Secondary (<u>emergency overflow</u>) roof drains or scuppers shall be provided where the roof perimeter construction extends above the roof in such a manner that water will be entrapped if the primary drains allow buildup for any reason. <u>Secondary drain inlets shall be not less than 2 inches (51 mm) nor more than 4 inches (102 mm) above the finish roof covering and shall be located as close as practical to the required vertical leaders or downspouts.</u>

Sub Code: Residential

'				
Date Proposal Submitted	4/2/2010	Section	14-23	
Chapter	14	TAC Recommendation	Pending Review	
Affects HVHZ	No	Commission Action	Pending Review	
Proponent	Doug Harvey	General Comments	Yes	
Attachments	Yes	Alternate Language	No	

Related Modifications

Summary of Modification

Replace the Florida Building Code, Residential Section 14-23 Plumbing with Section 14-23 Plumbing of the 2009 International Residential Code in its entirety.

Rationale

There are no Florida specific problems that are not covered by the regulations contained within the 2009 International Residential Code Section 14-23 Plumbing.

Fiscal Impact Statement

Impact to local entity relative to enforcement of code

There is no impact to local enforcement other than gaining consistency and putting inspection and review personnel in line with the Code that certification is attained under and used throughout the nation

Impact to building and property owners relative to cost of compliance with code

None

Impact to industry relative to the cost of compliance with code

Allows for a code that is more up to date with the new standards, practices and materials. Improves consistency and compliance in design, construction and enforcement. Saves money and time by allowing for a single place to request code modifications.

Requirements

Has a reasonable and substantial connection with the health, safety, and welfare of the general public

No change

Strengthens or improves the code, and provides equivalent or better products, methods, or systems of construction Improves

Does not discriminate against materials, products, methods, or systems of construction of demonstrated capabilities Theis change does not discriminate

Does not degrade the effectiveness of the code

This change does not degrade the effectiveness of the code and should improve effectiveness as consistency will be increased.

General Comment

5	Proponent	Doug Harvey	Submitted	6/1/2010	Attachments No
	Comment We, the E BOAF ex go along and have strike-thro needed, a documen (2) code of the Comm	Building Officials Associ ecutive board has been the line of the vote take a separate Florida sup bugh/underline version as well as the proposed t is the root document fi cycles, we ask the Com nission during a public i	ation of Florida (BC consulted regardir n by the Commissi plement, if needed of the document ha document being fa or the Florida code mission to accept t meeting in the Fall	DAF), believe thing this code pro on last fall to real The Internation is not been attain imiliar as the bar, and the Common he proposal and of 2009. BOAF	is modification may require some additional explanation. The posal and they are in agreement that the proposal appears to move non-Florida specific items, return to the base documents hal Code is the base code for the Florida Codes. As such, a ched to this modification. Due to the length and file sizes use code, this did not seem necessary. Since the base hission voted to return to the base documents over the next two d allow it to move forward. This is based on the vote taken by supports taking the very specific items modifying the base manage stand alone Florida supplement.

The 2009 International Residential Code Section 14-23 Plumbing text in its entirety.

Date Submitted	4/2/2010					
Mod Number						
Code Version	2010					
Code Change Cycle	2010 Triennial Original Modifications 03/01/2010-04/02/2010					
Sub-code	Florida Building Code, Residential					
Chapter Topic	Publication					
Section	14-23					
Related Modification						
Affects HVHZ	No					
Summary of modification	Replace the Florida Building Code, Residential Section 14-23 Plumbing with Section 14-23 Plumbing of the 2009 International Residential Code in its entirety.					
Text of Modification	The 2009 International Residential Code Section 14-23 Plumbing text in its entirety.					
Rational	There are no Florida specific problems that are not covered by the regulations contained within the 2009 International Residential Code Section 14-23 Plumbing.					
Fiscal Impact statement	There is no fiscal impact by this change					
Impact to Local Enforcement	There is no impact to local enforcement other than gaining consistency and putting inspection and review personnel in line with the Code that certification is attained under and used throughout the nation					
Impact to Building owner	None					
Impact to Industry	Allows for a code that is more up to date with the new standards, practices and materials. Improves consistency and compliance in design, construction and enforcement. Saves money and time by allowing for a single place to request code modifications.					
Requirements	None					
Has connection to health safety and Welfare	None					
Strengths or improves Code	Improves					
Does not discriminate	This change does not discriminate					
Does not degrade effectiveness of code	This change does not degrade the effectiveness of the code and should improve effectiveness as consistency will be increased.					

Date Proposal Submitted	4/2/2010	Section	24
Chapter	24	TAC Recommendation	Pending Review
Affects HVHZ	No	Commission Action	Pending Review
Proponent	Doug Harvey	General Comments	Yes
Attachments	Yes	Alternate Language	No

Related Modifications

Summary of Modification

Replace the Florida Building Code, Residential Section 24-Fuel Gas with Section 24 Fuel Gas of the 2009 International Residential Code in its entirety.

Rationale

There are no Florida specific problems that are not covered by the regulations contained within the 2009 International Residential Code Section 24 Fuel Gas.

Fiscal Impact Statement

Impact to local entity relative to enforcement of code

There is no impact to local enforcement other than gaining consistency and putting inspection and review personnel in line with the Code that certification is attained under and used throughout the nation

Impact to building and property owners relative to cost of compliance with code

None

Impact to industry relative to the cost of compliance with code

Allows for a code that is more up to date with the new standards, practices and materials. Improves consistency and compliance in design, construction and enforcement. Saves money and time by allowing for a single place to request code modifications.

Requirements

Has a reasonable and substantial connection with the health, safety, and welfare of the general public

No change

Strengthens or improves the code, and provides equivalent or better products, methods, or systems of construction Improves

Does not discriminate against materials, products, methods, or systems of construction of demonstrated capabilities This change does not discriminate

Does not degrade the effectiveness of the code

This change does not degrade the effectiveness of the code and should improve effectiveness as consistency will be increased.

General Comment

5	Proponent	Doug Harvey	Submitted	6/1/2010	Attachments No
	Comment We, the E BOAF exc go along f and have strike-thro needed, a document (2) code o the Comm	Building Officials Assoc ecutive board has beer the line of the vote take a separate Florida sup pugh/underline version as well as the proposed t is the root document fl cycles, we ask the Com- nission during a public	n consulted regardin en by the Commission oplement, if needed. of the document had d document being fa for the Florida code, numission to accept t meeting in the Fall	ng this code pro on last fall to re The Internation s not been atta miliar as the ba and the Comm he proposal an of 2009. BOAF	is modification may require some additional explanation. The posal and they are in agreement that the proposal appears to move non-Florida specific items, return to the base documents nal Code is the base code for the Florida Codes. As such, a iched to this modification. Due to the length and file sizes ase code, this did not seem necessary. Since the base nission voted to return to the base documents over the next two d allow it to move forward. This is based on the vote taken by supports taking the very specific items modifying the base manage stand alone Florida supplement.

The 2009 International Residential Code Section 24 Fuel Gas text in its entirety.

Date Submitted	4/2/2010				
Mod Number					
Code Version	2010				
Code Change Cycle	2010 Triennial Original Modifications 03/01/2010-04/02/2010				
Sub-code	Florida Building Code, Residential				
Chapter Topic	Publication				
Section	24				
Related Modification					
Affects HVHZ	No				
Summary of modification	Replace the Florida Building Code, Residential Section 24-Fuel Gas with Section 24 Fuel Gas of the 2009 International Residential Code in its entirety.				
Text of Modification	The 2009 International Residential Code Section 24 Fuel Gas text in its entirety.				
Rational	There are no Florida specific problems that are not covered by the regulations contained within the 2009 International Residential Code Sec 24 Fuel Gas.				
Fiscal Impact statement	There is no fiscal impact by this change				
Impact to Local Enforcement	There is no impact to local enforcement other than gaining consistency and putting inspection and review personnel in line with the Code that certification is attained under and used throughout the nation				
Impact to Building owner	None				
Impact to Industry	Allows for a code that is more up to date with the new standards, practices and materials. Improves consistency and compliance in design, construction and enforcement. Saves money and time by allowing for a single place to request code modifications.				
Requirements	None				
Has connection to health safety and Welfare	None				
Strengths or improves Code	Improves				
Does not discriminate	This change does not discriminate				
Does not degrade effectiveness of code	This change does not degrade the effectiveness of the code and should improve effectiveness as consistency will be increased.				

Date Proposal Submitted	3/28/2010	Section	2415.14.3	
Chapter	24	TAC Recommendation	Pending Review	
Affects HVHZ	No	Commission Action	Pending Review	
Proponent	J Glenn-BASF	General Comments	No	
Attachments	No	Alternate Language	No	

Related Modifications

Summary of Modification

Retain base code (IRC) language.

Rationale

The base code change provides more specific direction and restores the Florida Code to the nationally accepted practice.

Fiscal Impact Statement

Impact to local entity relative to enforcement of code

No impact on local enforcement.

Impact to building and property owners relative to cost of compliance with code

None

Impact to industry relative to the cost of compliance with code

none

Requirements

Has a reasonable and substantial connection with the health, safety, and welfare of the general public No change

Strengthens or improves the code, and provides equivalent or better products, methods, or systems of construction Brings Florida in-line with nationally accepted practice

Does not discriminate against materials, products, methods, or systems of construction of demonstrated capabilities Does not discriminate against anything.

Does not degrade the effectiveness of the code

Does not degrade the code.

G2415.14.3 (404.14.3) An insulated copper tracer wire or other approved conductor shall be installed adjacent to underground nonmetallic gas piping. Access shall be provided to the tracer wire or the tracer wire shall terminate above ground at each end of the nonmetallic gas piping. The tracer wire size shall not be less than 18 AWG and the insulation type shall be suitable for direct burial.

G2415.15.3 (404.15.3) <u>Tracer.</u> A yellow insulated copper tracer wire or other approved conductor shall be installed adjacent to underground nonmetallic piping. Access shall be provided to the tracer wire or the tracer wire shall terminate above ground at each end of the nonmetallic piping. The tracer wire size shall not be less than 18 AWG and the insulation type shall be suitable for direct burial.

Date Proposal Submitted	3/28/2010	Section	2417.7.4
Chapter	24	TAC Recommendation	Pending Review
Affects HVHZ	No	Commission Action	Pending Review
Proponent	J Glenn-BASF	General Comments	No
Attachments	No	Alternate Language	No

Summary of Modification

Retain base code (IRC) language

Rationale

The base code change provides more specific direction and restores the Florida Code to the nationally accepted practice.

Fiscal Impact Statement

Impact to local entity relative to enforcement of code

No impact on local enforcement.

Impact to building and property owners relative to cost of compliance with code

None

Impact to industry relative to the cost of compliance with code

None

Requirements

Has a reasonable and substantial connection with the health, safety, and welfare of the general public No change

Strengthens or improves the code, and provides equivalent or better products, methods, or systems of construction Brings Florida in-line with nationally accepted practice.

Does not discriminate against materials, products, methods, or systems of construction of demonstrated capabilities Does not discriminate against anything.

Does not degrade the effectiveness of the code

Does not degrade the code.

G2417.7.4 (406.7.4) Placing equipment in operation. After the piping has been placed in operation, all equipment shall be placed in operation per its listing and the manufacturer's instructions.

G2417.7.4 (406.7.4) Placing appliances and equipment in operation. After the piping system has been placed in operation, all appliances and equipment shall be purged and then placed in operation, as necessary.

Date Proposal Submitted Chapter Affects HVHZ Proponent	3/30/2010 24 No Robert Trumbower	Section TAC Recommendation Commission Action General Comments	G2408.2 (305.3) Pending Review Pending Review No
Attachments	No	Alternate Language	No

Summary of Modification

To make Section G2408.2 (305.3) of the Florida Residential Code the same as the Section 305.3 of the Florida Fuel Gas Code. **Rationale**

I see no reason why section G2408.2 of the Florida Residential Code should be different than section 305.3 of the Florida Fuel Gas Code.

Fiscal Impact Statement

Impact to local entity relative to enforcement of code

None

Impact to building and property owners relative to cost of compliance with code

None

Impact to industry relative to the cost of compliance with code

None

Requirements

Has a reasonable and substantial connection with the health, safety, and welfare of the general public This change clarifies the Florida Residential Code.

Strengthens or improves the code, and provides equivalent or better products, methods, or systems of construction Yes

Does not discriminate against materials, products, methods, or systems of construction of demonstrated capabilities No

Does not degrade the effectiveness of the code

No

G2408.2 (305.3) Water heaters installed in garages. Water heaters shall be installed in accordance with manufacturer's instructions which shall be available on the job site at the time of inspection. Elevation of ignition source. Equipment and appliances having an ignition source shall be elevated such that the source of ignition is not less than 18 inches (457 mm) above the floor in hazardous locations and public garages, private garages, repair garages, motor fuel-dispensing facilities and parking garages. For the purpose of this section, rooms or spaces that are not part of the living space of a dwelling unit and that communicate directly with a private garage through

openings shall be considered to be part of the private garage.

Exception: Elevation of the ignition soure is not required for appliances that are listed as flammable vapor ignition resistant.

1			
Date Proposal Submitted	3/28/2010	Section	2603.6
Chapter	26	TAC Recommendation	Pending Review
Affects HVHZ	No	Commission Action	Pending Review
Proponent	J Glenn-BASF	General Comments	No
Attachments	No	Alternate Language	No

Summary of Modification

Retain base code language

Rationale

The base code requirement is basically the same.

Fiscal Impact Statement

Impact to local entity relative to enforcement of code

There is no impact on local enforcement.

Impact to building and property owners relative to cost of compliance with code

None

Impact to industry relative to the cost of compliance with code

None

Requirements

Has a reasonable and substantial connection with the health, safety, and welfare of the general public No change

Strengthens or improves the code, and provides equivalent or better products, methods, or systems of construction Provides the same level of protection while maintaining the nationally recognize language

Does not discriminate against materials, products, methods, or systems of construction of demonstrated capabilities Does not discriminate against anything.

Does not degrade the effectiveness of the code

Does not degrade the code.

P2603.6 Freezing. Where the design temperature is less than 32°F (0°C), a water, soil or waste pipe shall not be installed outside of a building, in attics or crawl spaces, or be concealed in outside walls in any location subjected to freezing temperatures unless an adequate provision is made to protect it from freezing by insulation or heat or both. Water service pipe shall be installed not less than 12 inches (305 mm) deep or less than 6 inches (152 mm) below the frost line.

P2603.6 Freezing. In localities having a winter design temperature of 32°F (0°C) or lower as shown in Table R301.2(1) of this code, a water, soil or waste pipe shall not be installed outside of a building, in exterior walls, in attics or crawl spaces, or in any other place subjected to freezing temperature unless adequate provision is made to protect it from freezing by insulation or heat or both. Water service pipe shall be installed not less than 12 inches (305 mm) deep and not less than 6 inches (152 mm) below the frost line.

Date Proposal Submitted Chapter Affects HVHZ	3/31/2010 26 No	Section TAC Recommendation Commission Action	P2603.2 Pending Review Pending Review
Proponent	T Stafford	General Comments	No
Attachments	Yes	Alternate Language	No

See modifications to Sections R301.3, R301.5, R404,R502, R503, R505, R602, R603, R604, R605, R611, R702, R802, R803, R804, M1308.1, M2101.6 in the FBC Residential.

Summary of Modification

This modification is a correlation with the modification that deletes the prescriptive construction requirements in the code that do not apply to the design of buildings in Florida.

Rationale

This modification is a correlation with the modification that deletes the prescriptive construction techniques in the FBCR that do not apply in Florida due to wind speed limitations. See attached supporting documentation.

Fiscal Impact Statement

Impact to local entity relative to enforcement of code

This modification will improve local entities in their efforts to enforce the code by removing requirements that are not applicable in Florida due to wind speed limitations.

Impact to building and property owners relative to cost of compliance with code

This modification will have a negligible impact to building and property owners relative to cost of compliance with the code.

Impact to industry relative to the cost of compliance with code

This modification will have a negligible impact to the industry relative to cost of compliance with the code.

Requirements

Has a reasonable and substantial connection with the health, safety, and welfare of the general public

This modification removes provisions that do not apply to the construction of buildings in Florida thereby reducing confusion associated with understanding the code requirements and ensuring that the appropriate provisions of the code are being used and applied.

Strengthens or improves the code, and provides equivalent or better products, methods, or systems of construction

This modification strengthens the code by deleting requirements that are only applicable for lower design wind speed areas that are not applicable to the construction of buildings in Florida.

Does not discriminate against materials, products, methods, or systems of construction of demonstrated capabilities

The proposed changes are performance based and therefore do not discriminate against any other material, product, method, or system of construction.

Does not degrade the effectiveness of the code

This modification improves the effectiveness of the code by deleting requirements that are not applicable to the construction of buildings in Florida, which ensures that the code is more focuse on the methods appropriate for the applicable design wind speeds.

P4212 Text Modification

P2603.2 Drilling and notching. Wood-framed structural members shall not be drilled, notched or altered in any manner except as provided in Sections <u>R502.1.5</u> R502.2.6, <u>R602.1.4</u> R602.1.3.1, <u>R602.2.7</u>, <u>R802.1.8</u> R802.2.6 and <u>R802.2.6.1</u>. Holes, <u>cutting, and notching</u> in cold-formed steel-framed <u>members shall be in accordance with AISI 230</u> load bearing members shall only be permitted in accordance with Sections R506.2, R603.2 and R804.2. In accordance with the provisions of Sections R603.3.4 and R804.3.5 cutting and notching of flanges and lips of cold-formed steel framed load bearing members shall not be permitted. Structural insulated panels (SIPs) shall be drilled and notched or altered in accordance with the provisions of Section R613.7.

Reason: This proposal is essentially a clean-up and clarification of the prescriptive requirements in the code. Many of the requirements in the base code (2009 IRC) are only applicable where the basic wind speed is less than 100 mph. According to the Figure R301.2(4), areas where the wind speed is less than 100 mph is very limited in Florida. Section R301.2.1.1 requires buildings to be designed by some other standard where the wind speed equals or exceeds 100 mph. Even though Figure R301.2(4) does show some areas with a wind speed less than 100 mph, we are not aware of any jurisdiction in Florida that has established a wind speed of less than 100 mph. In fact, the county maps that were required to be drawn all indicate a design wind speed of at least 100 mph. Therefore, the less than 100 mph provisions that are shown stricken through in this proposal do not apply anywhere in Florida. By removing these provisions will improve understanding of the code and will prevent someone from inadvertently using prescriptive provisions that will not satisfy the required design wind loads.

Date Proposal Submitted	3/18/2010	Section	P2803.6.1.2
Chapter	28	TAC Recommendation	Pending Review
Affects HVHZ	No	Commission Action	Pending Review
Proponent	Ben Bentley	General Comments	No
Attachments	No	Alternate Language	No

3603, 3647, 3649

Summary of Modification

Add exception to this section of code for a solar system that can have multiple PRV's. Discharging a 1/2" relief device from the solar loop into the T&P tank discharge should be acceptable.

Rationale

Maximum discharge flow through all the discharge piping can not be more than the maximum discharge of the largest relief device discharge size. Section M2301.2.8 requirment is the only reason a pressure relief device must be installed in the collector loop. If this relief device opens only a cup of water is discharged. Therefore, discharging a 1/2" relief device in the solar loop into the T&P tank discharge meets all discharge requirments.

Fiscal Impact Statement

Impact to local entity relative to enforcement of code

None, easily recognized.

Impact to building and property owners relative to cost of compliance with code

None

None

Impact to industry relative to the cost of compliance with code

Requirements

Has a reasonable and substantial connection with the health, safety, and welfare of the general public Meets all requirments like the discharge from a T&P valve.

Strengthens or improves the code, and provides equivalent or better products, methods, or systems of construction Provides equivalent products at a lower cost to the consumer.

Does not discriminate against materials, products, methods, or systems of construction of demonstrated capabilities No

Does not degrade the effectiveness of the code

No

P2803.6.1.2 Requirements for discharge piping. The discharge piping serving a pressure relief valve, temperature relief valve or combination thereof shall:

1. Not be directly connected to the drainage system.

 1_{2} . Discharge through an air gap located in the same room as the water heater.

 a_3 . Not be smaller than the diameter of the outlet of the valve served and shall discharge full size to the air gap.

¹■₂4. Serve a single relief device and shall not connect to piping serving any other relief device or equipment.

Exception: in a solar direct water heating system, the PRV discharge may connect directly into the T&P relief discharge drainage piping.

No change to the remaining text.

Date Proposal Submitted Chapter Affects HVHZ Proponent	3/18/2010 28 No Ben Bentley	Section TAC Recommendation Commission Action General Comments	P2803.6.2.1 Pending Review Pending Review No	
		Alternate Language	No	

3603, 3648, 3649

Summary of Modification

An exception needs to be added to the code to clarify proper discharge of open loop potable water systems where the relief device is located on the roof near the solar collector(s).

Rationale

Roof pressure relief valve only operates if isolation on the collector occurs per M2301.2.8. Under that condition only a cup or so of water can be expeled from the system and flow onto the roof. This small amount of water causes no personal injury to occupants because it will evaporate before it can reach the roof edge, even if it's only a foot away. It can not cause structural damage to the building anymore so than rain hitting the roof.

Fiscal Impact Statement

Impact to local entity relative to enforcement of code

None, inspection can be completed by visualization at ground level.

Impact to building and property owners relative to cost of compliance with code None, if anything, system aesthetics will be improved.

Impact to industry relative to the cost of compliance with code

Very little, if anything, customer cost will be slightly reduced.

Requirements

Has a reasonable and substantial connection with the health, safety, and welfare of the general public Yes, it does not pose any health or safety issues.

- Strengthens or improves the code, and provides equivalent or better products, methods, or systems of construction Yes, it's a better method due to improvments in aesthetics.
- Does not discriminate against materials, products, methods, or systems of construction of demonstrated capabilities No.

Does not degrade the effectiveness of the code

No, it does not pose health or safety hazards.

P2803.6.2.1 Discharge. The relief valve shall discharge full size to a safe place of disposal such as the floor, water heater pan, outside the building or an indirect waste receptor. The discharge pipe shall not have any trapped sections and shall have a visible air gap or air gap fitting located in the same room as the water heater. The discharge shall be installed in a manner that does not cause personal injury to occupants in the immediate area or structural damage to the building.

Exception: The relief valve discharge of an open loop potable water system may discharge directly on the roof no less than two inches nor more than six inches from roof surface, pointed downward towards the roof without additional discharge piping.

Date Proposal Submitted	3/26/2010	Section	R4101.17.1.9
Chapter	41	TAC Recommendation	Pending Review
Affects HVHZ	No	Commission Action	Pending Review
Proponent	Jennifer Hatfield	General Comments	No
Attachments	No	Alternate Language	No

Summary of Modification

This proposal makes changes to the pool alarm requirements in order to provide for consistency with the UL 2017 General-Purpose Signaling Devices and Systems standard that an exit alarm must comply with per the code.

Rationale

Without this change requirements within the code would be inconsistent with what is required in UL 2017. For example, section 78.4 of the standard requires the alarm to sound within 7 secs of access to the open position, but section 424.2.17.1.9 of the Code says it must sound immediately. An exit alarm manufacturer certifies its product to UL 2017 requirements.

Fiscal Impact Statement

Impact to local entity relative to enforcement of code

None, it simply removes language inconsistent with a referenced standard.

Impact to building and property owners relative to cost of compliance with code

None, it simply removes language inconsistent with a referenced standard.

Impact to industry relative to the cost of compliance with code

The modification may decrease cost by eliminating confusion when trying to comply. If this change is not made and enforcement was required of both the UL standard and the inconsistent requirements laid out in the Code, additional costs could occur in order to make the product comply with both.

Requirements

Has a reasonable and substantial connection with the health, safety, and welfare of the general public

Exit alarms are safety features certified to a national standard. This proposal clarifies that exit alarms in FL will meet these requirements. This proposal does not make any changes that are inconsistent with the Florida Residential Swimming Pool Safety Act, where exit alarms are an option.

Strengthens or improves the code, and provides equivalent or better products, methods, or systems of construction The modification improves the code by making it consistent with the UL 2017 standard.

Does not discriminate against materials, products, methods, or systems of construction of demonstrated capabilities This modification does not discriminate; in fact, it ensures all products are on the same playing field, each having to meet the requirements of the UL 2017 standard.

Does not degrade the effectiveness of the code

The modification improves the effectiveness of the code by clarifying what is required of an exit alarm used in association with the swimming pool barrier requirements.

R4101.17.1.9 Where a wall of a dwelling serves as part of the barrier, one of the following shall apply:

1. All doors and windows providing direct access from the home to the pool shall be equipped with an exit alarm complying with UL 2017 that has a minimum sound pressure rating of 85 dB A at 10 feet (3048 mm). The exit alarm shall produce an continuous audible alarm within 7 seconds warning when the access is door and its screen are opened. The alarm shall sound immediately after the door is opened and be capable of being heard throughout the house during normal household activities. The alarm may shall be equipped with a momentary self-restoring switch manual means to temporarily deactivate the alarm for a single opening. Such deactivation shall last no more than 15 seconds. The deactivation switch shall be located at least 54 inches (1372 mm) above the threshold of the access door. Separate alarms are not required for each door or window if sensors wired to a central alarm sound when contact is broken at any opening.

Exceptions:

a. Screened or protected windows having a bottom sill height of 48 inches (1219 mm) or more measured from the interior finished floor at the pool access level.

b. Windows facing the pool on floor above the first story.

c. Screened or protected pass-through kitchen windows 42 inches (1067 mm) or higher with a counter beneath.

2. All doors providing direct access from the home to the pool must be equipped with a self-closing, selflatching device with positive mechanical latching/locking installed a minimum of 54 inches (1372 mm) above the threshold, which is approved by the authority having jurisdiction.

Date Proposal Submitted	3/26/2010	Section	R4101.4.2
Chapter	41	TAC Recommendation	Pending Review
Affects HVHZ	No	Commission Action	Pending Review
Proponent	Rebecca Quinn	General Comments	Yes
Attachments	No	Alternate Language	No

Summary of Modification

Move provisions for pools in flood hazard areas that are found in Appendix G of the IRC into the body of the code. This modification refers back to R322 to determine whether specific requirements apply.

Rationale

Modifications recommended by FBC Flood Resistant Standards Workgroup, with concurrence by Structural TAC, to retain IRC flood provisions IBC and make Florida-specific amendments. IRC flood provisions are consistent with the NFIP. The FBC adopted the recommendation at its October 2009 meeting. Workgroup's final report is attached to the modification for R322 and http://consensus.fsu.edu/FBC/Flood-Resistant-Standards.html

Fiscal Impact Statement

Impact to local entity relative to enforcement of code

No impact; 454 Florida communities participate in the NFIP and administer ordinance that include NFIP requirements (44 CFR 60.3).

Impact to building and property owners relative to cost of compliance with code

No impact; building and property owners already are required to comply with local floodplain management ordinances.

Impact to industry relative to the cost of compliance with code

No impact; building and property owners already are required to comply with local floodplain management ordinances.

Requirements

Has a reasonable and substantial connection with the health, safety, and welfare of the general public

Compliance with flood-resistant provisions reduces flood damage and protects life, property and general welfare.

Strengthens or improves the code, and provides equivalent or better products, methods, or systems of construction

Improves the code by having all load requirements addressed; provides equivalency with requirements of local floodplain management ordinances. The requested statutory authority will allow locally-adopted higher standards to preserve better protection and insurance discounts.

Does not discriminate against materials, products, methods, or systems of construction of demonstrated capabilities Includes provisions for flood damage-resistant materials and methods, consistent with the NFIP and current floodplain management ordinances.

Does not degrade the effectiveness of the code

Improves effectiveness by requiring buildings to be designed and constructed with consideration of all applicable codes.

General Comment

5	Proponent	Mo Madani	Submitted	5/26/2010	Attachments	No
ۍ ا	Comment					
66	if approved	d. Section 424.2 of the FB	C, Building sho	uld be revised to make co	onsistent.	
30						
<u>ک</u>						

R4101.4.2 Items not covered. For any items not specifically covered in these requirements, the administrative authority is hereby authorized to require that all equipment, materials, methods of construction and design features shall be proven to function adequately, effectively and without excessive maintenance and operational difficulties.

R4101.4.2.1. Flood hazard areas. Pools installed in flood hazard areas established in Section R322 shall comply with Section R322.2.4 (A Zones) or R322.3.3.1 in coastal high-hazard areas (V Zones).

Date Proposal Submitted	4/1/2010	Section	APSP
Chapter	43	TAC Recommendation	Pending Review
Affects HVHZ	No	Commission Action	Pending Review
Proponent	Jennifer Hatfield	General Comments	No
Attachments	No	Alternate Language	No

Summary of Modification

Clarifies that NSPI is the former name of the APSP. Updates the ANSI/NSPI-5 standard for residential inground pools to reflect the 2010 revision.

Rationale

This proposal clarifies that NSPI is the former name of APSP. It also updates the ANSI/NSPI-5 Residential Inground Swimming Pools standard to the 2010 revision. This revision is currently in the last phase of being approved and should be available by the time this code proposal goes in front of the TAC.

Fiscal Impact Statement

Impact to local entity relative to enforcement of code

The only fiscal impact may be associated with purchasing the revised ANSI/APSP-5 standard.

Impact to building and property owners relative to cost of compliance with code

There is no fiscal impact to consumers.

Impact to industry relative to the cost of compliance with code

The industry will have to comply with any changes in the revised ANSI-5 standard and will need to purchase this updated standard.

Requirements

Has a reasonable and substantial connection with the health, safety, and welfare of the general public

Updating to the lastest revision of a standard provides consumers who install a new pool with the most recent requirements.

Strengthens or improves the code, and provides equivalent or better products, methods, or systems of construction This proposal improves the code by updating the ANSI approved standard that provides construction requirements for inground residential pools.

Does not discriminate against materials, products, methods, or systems of construction of demonstrated capabilities This proposal does not discriminate.

Does not degrade the effectiveness of the code

This proposal does not degrade the effectiveness of the code.

Note: changes to what is in the online draft are in green.

APSP

Association of Pool and Spa Professionals

[formerly National Spa and Pool Institute (NSPA)]

2111 Eisenhower Avenue

Alexandria, VA 22314

ANSI/APSP 7—06 American National Standard for Suction Entrapment Avoidance in Swimming Pools, Wading Pools, Spas, Hot Tubs, and Catch Basins......R4101.6.1, R4101.6.1, R4101.6.3, R4101.6.6

ANSI/NSPI 3—99 American National Standard for Permanently Installed Residential Spas......R4101.6.1

ANSI/<u>NSPI 5—03</u><u>APSP 5—10</u> American National Standard for Residential In ground Swimming Pools......R4101.6.1

ANSI/NSPI 6—99 American National Standard for Portable Spas.....R4101.6.1

Summary of Modification

Updates the UL 2017 Standard for General-Purpose Signaling Devices and Systems to the 2008 second edition with revisions. Rationale

Manufacturers of products relative to this standard will be certifying to the updated 2008 second edition; therefore our code should reference the latest version of the ANSI approved UL 2017 standard.

Fiscal Impact Statement

Impact to local entity relative to enforcement of code

There will not be any cost related to this modification to update references to the national standard.

Impact to building and property owners relative to cost of compliance with code

There will not be any cost related to this modification to update references to the national standard.

Impact to industry relative to the cost of compliance with code

There will not be any cost related to this modification to update references to the national standard.

Requirements

Has a reasonable and substantial connection with the health, safety, and welfare of the general public Yes by referencing the latest edition of the standard it ensures products will have to meet the revised edition. These products include exit alarms that may be part of a pool safety barrier a consumer chooses to install to meet the Florida Residential Swimming Pool Safety Act, chapter 515, F.S.

Strengthens or improves the code, and provides equivalent or better products, methods, or systems of construction The modification improves the code by referencing the latest edition of the national standard.

Does not discriminate against materials, products, methods, or systems of construction of demonstrated capabilities This modification does not discriminate.

Does not degrade the effectiveness of the code

The modification improves the effectiveness of the code by referencing the latest edition of the national standard.

P3937 Text Modification

UL

Underwriters Laboratories, Inc. 333 Pfingsten Road Northbrook, IL 60062-2096

2017 2000 Standards for General purpose Signaling Devices and Systems – 2017-2004 (R2008) Standard for General-Purpose Signaling Devices and Systems – with Revisions through October 13, 2009 R4101.17.1.9