

PRODUCT APPROVAL SUPPORTING CALCULATIONS

Series/Model 25 ga Steel Wood Edge Glazed and Opaque Doors w/ Glazed Sidelites OXXO

REPORT NO.: 27206.04-107-16

- RENDERED TO: Jeld-Wen Windows & Doors 3737 Lakeport Blvd Klamath Falls, Oregon
- PREPARED BY: Michael D. Stremmel, P.E. Molimo, LLC 1410 Eden Road York, Pennsylvania 17402

DATE: 9/22/2023

This item has been digitally signed and sealed by Michael D. Stremmel, PE on the date adjacent to the seal.

Printed copies of this document are not considered signed and sealed and the signature must be verified on electronic copies.

Michael D. Stremmel, P.E. Senior Project Engineer FL PE 65868 FL REG 37122

It is a violation to alter this document in any way unless acting under the direction of a licensed professional engineer.

SCOPE:

Molimo, LLC was contracted by Jeld-Wen Windows & Doors to evaluate alternate installation methods for their 25 ga Steel Wood Edge Glazed and Opaque Doors w/ Glazed Sidelites OXXO. The evaluation is based on physical testing and product certifications.

Reference standards utilized in this project include:

Florida Building Code. International Code Council.

ANSI/AWC National Design Specification (NDS) for Wood Construction. American Wood Council.

AISI S100 North American Specification for the Design of Cold-Formed Steel Structural *Members*. American Iron and Steel Institute.

ICC-ES Report ESR-1976 ITW Buildex TEKS Self-Drilling Fasteners. ICC Evaluation Service.

NOA 21-0201.06 *Tapcon Concrete and Masonry Anchors with Advanced Threadform Technology*. Miami-Dade County Product Control Section.

The anchorage analysis presented herein does not address the water resistance, water penetration, or air infiltration performance of the installation method or the installed product. In addition, the analyses rely on the assumption that the building substrate is capable of withstanding the incurred loads.

Certification of Independence

In accordance with Rule 61G20-3 Florida Administrative Code, Molimo, LLC hereby certifies the following:

- Molimo, LLC does not have, nor does it intend to acquire or will it acquire, a financial interest in any company manufacturing or distributing products tested or labeled by the agency.
- Molimo LLC s is not owned, operated or controlled by any company manufacturing or distributing products it tests or labels.
- Michael D. Stremmel, P.E. does not have nor will acquire, a financial interest in any company manufacturing or distributing products for which the reports are being issued.
- Michael D. Stremmel, P.E does not have, nor will acquire, a financial interest in any other entity involved in the approval process of the product.

ANALYSES:

Summary of Test Results

Table 1 summarizes the various 25 ga Steel Wood Edge Glazed and Opaque Doors w/ Glazed Sidelites OXXO products and their corresponding performance levels which have been established by testing or product certification.

Series/Model	Test Report Number	Size (W x H)	Performance
25 ga Steel Wood Edge	NCTL Report No.		125 / 25 mef
Glazed and Opaque Doors	NCTL-210-3804-1	148-7/8" x 81-3/4"	+35 / -35 psf
w/ Glazed Sidelites	(Rev. 0, 3/01/12)		(non-impact)

Testing documented in Table 1 was conducted by National Certified Testing Laboratories of Orlando, Florida (Florida Department of Business & Professional Regulation Test Lab No. TST1589 – laboratory was approved at the time of testing). The testing documented above is certified by NAMI under certification number NI011065-R5 and NI011065.01-R6 (Expires 4/30/2028).

As-Tested Installation Analysis

For air/water/structural testing, the test specimen was secured to a Douglas-Fir wood test buck with #10 wood screws (1-1/2" min. embedment) at the head and jambs and a continuous bed of silicone at the sill. The as tested installation method is evaluated on Pages 5 and 6. These capacities will be used to prove acceptable anchors and substrates for the product.

Alternate Anchorages

Calculations on Pages 7 through 13 determine the design capacity of alternate installation anchorages for the product.

Anchorages Requirements

As-tested spacing must be maintained. It must be determined that the anchorages are not overloaded for the approved product size and design pressures. Calculations presented on Page 14 show the alternate anchorages are acceptable for the established product performance.

Anchorage requirements established by this report are accurately presented in Drawing D1000350.

<u>As-Tested Installation – Through Frame to Wood</u>

Anchor: #10 Wood Screw (1-1/2" Min Embedment)

Details: 0.719" thick wood frame (G = 0.42) No shim space was utilized

Substrate: Douglas-Fir wood test buck (G = 0.46)

Wood Screw Capacity (Shear)

Z' = <u>136 lb</u>

(See Following Page)

Design Capacity of the Connection = 136 lb

г

Lateral Design Strength of Wood Connections

<u>Data</u>

Shank Dia = 0.19 Root Dia. = 0.15 F_{yb} = 80,00 Fastener length = 2.25 Main Member	 in. psi in. as Fir (South) psi jn. in. in. 	Side Meml Material G θ F _{es} Thickness k ₁ k ₂ k ₃ R _d R _d	= = = = = = =	1-1/2" min en 0.42 90 3,350 0.719 0.7213 1.2321 1.36 2.20 2.20 2.20	nbedment SPF psi in. (Mode I _m , I _s) (Mode II) (Mode III _m , III _s , I
Root Dia. = 0.15 F_{yb} = 80,00 Fastener length = 2.25 Main Member	 in. psi in. as Fir (South) psi jn. in. in. 	Material G θ F _{es} Thickness k ₁ k ₂ k ₃ R _d R _d		0.42 90 3,350 0.719 0.7213 1.2321 1.36 2.20 2.20	SPF psi in. (Mode I _m , I _s) (Mode II)
$\begin{array}{cccc} F_{yb} & = & 80,00 \\ Fastener length & = & 2.25 \\ \hline Main Member \\ Material & = & Doug \\ G & = & 0.44 \\ \theta & = & 90 \\ F_e & = & 4,00 \\ \hline F_e & = & 4,00 \\ \hline F_e & = & 1.50 \\ \hline Calculations \\ \hline Lateral Bearing Factors \\ \hline D & = & 0.15 \\ \ell_m & = & 1.32 \\ \ell_m & = & 1.32 \\ K_\theta & = & 1.32 \\ R_e & = & 1.19 \\ R_t & = & 1.84 \\ \hline Mode I_m & = & 366 \\ Mode I_s & = & 166 \\ Mode II & = & 120 \\ Mode III_s & = & 85 \\ Mode III_s & = & 85 \\ Mode IV & = & 104 \\ \hline \end{array}$	0 psi in. as Fir (South) psi j in. 2 in. 5 in.	Material G θ F _{es} Thickness k ₁ k ₂ k ₃ R _d R _d		0.42 90 3,350 0.719 0.7213 1.2321 1.36 2.20 2.20	psi in. (Mode I _m , I _s) (Mode II)
Fastener length = 2.25 Main Member Material = Doug G = 0.46 θ = 90 Fe = 4,00 Thickness = 1.50 Calculations Internal Bearing Factors Internal Bearing Factors Lateral Bearing Factors 0 1.32 ℓ_m = 1.32 k_{θ} = 1.25 ℓ_m = 1.32 K_{θ} = 1.25 ℓ_m = 1.32 K_{θ} = 1.25 K_{0} = 2.20 R_{e} = 1.9 R_{t} = 3.66 Mode I_m = 3.66 Mode I_m = 1.66 Mode II = 1.26 Mode III_m =) in. as Fir (South)) psi) in. 2 in. 5 in.	Material G θ F _{es} Thickness k ₁ k ₂ k ₃ R _d R _d		0.42 90 3,350 0.719 0.7213 1.2321 1.36 2.20 2.20	psi in. (Mode I _m , I _s) (Mode II)
Main Member Material = Doug G = 0.40 θ = 90 Fe = 4,00 Thickness = 1.50 Calculations Lateral Bearing Factors ℓ_m = 1.32 ℓ_m = 1.32 ℓ_m = 1.25	as Fir (South) psi in. in. in.	Material G θ F _{es} Thickness k ₁ k ₂ k ₃ R _d R _d		0.42 90 3,350 0.719 0.7213 1.2321 1.36 2.20 2.20	psi in. (Mode I _m , I _s) (Mode II)
Material = Doug G = 0.44 θ = 90 Fe = 4,00 Thickness = 1.50 Calculations Lateral Bearing Factors ℓ_m = 0.15 ℓ_m = 0.22 K_0 = 1.29 R_t = 1.84 Mode I_m = 3.66 Mode II = 1.32 Mode II = 1.32 Mode III_s =) psi) in. 2 in. 5 in.	Material G θ F _{es} Thickness k ₁ k ₂ k ₃ R _d R _d		0.42 90 3,350 0.719 0.7213 1.2321 1.36 2.20 2.20	psi in. (Mode I _m , I _s) (Mode II)
$\begin{array}{ccccccc} G & = & 0.44 \\ \theta & = & 90 \\ F_e & = & 4,00 \\ Thickness & = & 1.50 \\ \hline \\ \begin{tabular}{lllllllllllllllllllllllllllllllllll$) psi) in. 2 in. 5 in.	$\begin{array}{c} G\\ \theta\\ F_{es}\\ Thickness\\ k_1\\ k_2\\ k_3\\ R_d\\ R_d\\ R_d\\ R_d\end{array}$	= = = = = = =	0.42 90 3,350 0.719 0.7213 1.2321 1.36 2.20 2.20	psi in. (Mode I _m , I _s) (Mode II)
θ = 90 $F_e = 4,00$ Thickness = 1.50 Calculations Lateral Bearing Factors D = 0.15 $\ell_m = 1.32$ $K_0 = 1.25$ $K_0 $) psi) in. 2 in. 5 in.	$\begin{array}{c} \theta \\ F_{es} \\ Thickness \\ k_1 \\ k_2 \\ k_3 \\ R_d \\ R_d \\ R_d \end{array}$	= = = = = = =	90 3,350 0.719 0.7213 1.2321 1.36 2.20 2.20	in. (Mode Ι _m , Ι _s) (Mode II)
$F_{e} = 4,00$ Thickness = 1.50 Calculations Lateral Bearing Factors D = 0.15 $\ell_{m} = 1.32$ $K_{0} = 1.22$ $K_{0} = 1.$) in. 2 in. 5 in. 4	F _{es} Thickness k ₁ k ₂ k ₃ R _d R _d	= = = = = =	3,350 0.719 0.7213 1.2321 1.36 2.20 2.20	in. (Mode I _m , I _s) (Mode II)
Thickness = 1.50 Calculations D = 0.15 ℓ_m = 0.15 ℓ_m = 1.32 K_{θ} = 1.22 K_{θ} = 1.24 K_{0} = 2.26 R_{e} = 1.49 R_{t} = 1.84 Lateral Design Values. Z 1.84 Mode I_m = 366 Mode I_{s} = 166 Mode II = 126 Mode III_s = 85 Mode IV = 104 Adjustment Factors 104) in. 2 in. 5 in. 4	Thickness k ₁ k ₂ k ₃ R _d R _d	= = = = =	0.719 0.7213 1.2321 1.36 2.20 2.20	in. (Mode Ι _m , Ι _s) (Mode II)
Calculations Lateral Bearing Factors D = 0.15 ℓ_m = 1.32 ℓ_m = 1.32 K_{θ} = 1.23 K_{θ} = 2.20 R_{θ} = 1.19 R_t = 1.19 R_t = 1.84 Design Values. Z Mode I_m = 366 Mode I_m = 366 Mode I_m = 133 Mode I_m = 133 Mode III_m = 133 Mode III_m = 133 Mode III_s = 85 Mode IV = 104 Adjustment Factors = 104	2 in. 5 in. 4	k ₁ k ₂ k ₃ R _d R _d	= = = =	0.7213 1.2321 1.36 2.20 2.20	(Mode I _{nv} I _s) (Mode II)
Lateral Bearing Factors D = 0.15 ℓ_m = 1.32 ℓ_m = 1.22 K_{θ} = 1.22 K_D = 2.20 R_e = 1.19 R_t = 1.84 Lateral Design Values, Z Mode I_m = 366 Mode I_s = 166 Mode I_s = 166 Mode I_s = 166 Mode II_s = 85 Mode III_s = 85 Mode IV = 104 Adjustment Factors	5 in. 4	k ₂ k ₃ R _d R _d	= = =	1.2321 1.36 2.20 2.20	(Mode II)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5 in. 4	k ₂ k ₃ R _d R _d	= = =	1.2321 1.36 2.20 2.20	(Mode II)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5 in. 4	k ₂ k ₃ R _d R _d	= = =	1.2321 1.36 2.20 2.20	(Mode II)
$\ell_m = 1.32$ $K_{\theta} = 1.23$ $K_{0} = 2.20$ $R_{c} = 1.19$ $R_{t} = 1.84$ Lateral Design Values, Z Mode Im = 366 Mode II = 120 Mode III = 133 Mode III_s = 85 Mode III_s = 85 Mode IV = 104	5 in. 4	k ₂ k ₃ R _d R _d	= = =	1.2321 1.36 2.20 2.20	(Mode II)
$\begin{array}{rcrcrc} K_{\theta} & = & 1.23 \\ K_{D} & = & 2.20 \\ R_{D} & = & 1.19 \\ R_{t} & = & 1.84 \\ \hline \mbox{Lateral Design Values. Z} \\ \hline \mbox{Mode } I_{m} & = & 366 \\ \hline \mbox{Mode } I_{S} & = & 166 \\ \hline \mbox{Mode } II & = & 120 \\ \hline \mbox{Mode } II & = & 133 \\ \hline \mbox{Mode } III_{s} & = & 85 \\ \hline \mbox{Mode } II_{s} & = & 85 \\ \hline \mbox{Mode } IV & = & 104 \\ \hline \\mbox{Mode } IV & = & 104 \\ \hline \\mbox{Mode } IV & = & 104 \\ \hline \mbox{Mode } IV & = & 104 \\ \hline \\mbox{Mode } IV & = & 104 \\ \hline \\mbox{Mode } IV & = & 104 \\ \hline \\mbox{Mode } IV & = & 104 \\ \hline \\mbox{Mode } IV & = & 104 \\ \hline \\mbox{Mode } IV & = & 104 \\ \hline \\mbox{Mode } IV & = & 104 \\ \hline \\mbox{Mode } IV & = & 104 \\ \hline \M$	1	k ₃ R _d R _d	= = =	1.36 2.20 2.20	(Mode II)
$\begin{array}{rcrcrcr} K_{D} & = & 2.20 \\ R_{e} & = & 1.19 \\ R_{t} & = & 1.84 \\ \hline \mbox{Lateral Design Values. Z} \\ \hline \mbox{Mode } I_{m} & = & 366 \\ \hline \mbox{Mode } I_{s} & = & 166 \\ \hline \mbox{Mode } II & = & 120 \\ \hline \mbox{Mode } II & = & 133 \\ \hline \mbox{Mode } III_{s} & = & 85 \\ \hline \mbox{Mode } III_{s} & = & 85 \\ \hline \mbox{Mode } IV & = & 104 \\ \hline \mbox{Adjustment Factors} \end{array}$	1	R _d R _d	= =	2.20 2.20	(Mode II)
$\begin{array}{rcrcrc} R_{e} & = & 1.19 \\ R_{t} & = & 1.84 \\ \hline R_{t} & = & 1.84 \\ \hline \\ \mbox{Lateral Design Values. Z} \\ \hline \\ \mbox{Mode } I_{m} & = & 366 \\ \hline \\ \mbox{Mode } I_{s} & = & 166 \\ \hline \\ \mbox{Mode } II & = & 120 \\ \hline \\ \mbox{Mode } II_{m} & = & 133 \\ \hline \\ \mbox{Mode } II_{s} & = & 85 \\ \hline \\ \mbox{Mode } IV & = & 104 \\ \hline \\ \mbox{Adjustment Factors} \end{array}$	1	R _d	=	2.20	(Mode II)
$R_{t} = 1.84$ $Lateral Design Values, Z$ $Mode I_{m} = 366$ $Mode I_{s} = 166$ $Mode II = 120$ $Mode III_{m} = 133$ $Mode III_{s} = 85$ $Mode IV = 104$ $Adjustment Factors$			=		
Lateral Design Values, ZMode I_m 366Mode I_s 166Mode II120Mode III_m133Mode III_s85Mode IV104Adjustment Factors		u			IMOUE IIIm, IIIc, I
Mode I_m = 366 Mode I_s = 166 Mode II = 120 Mode III_m = 133 Mode III_s = 85 Mode IV = 104 Adjustment Factors	11-6				C IIV 3
Mode I_s = 166 Mode II = 120 Mode III_m = 133 Mode III_s = 85 Mode IV = 104 Adjustment Factors					
Mode II = 120 Mode III _m = 133 Mode III _s = 85 Mode IV = 104 Adjustment Factors					
$\begin{array}{rcl} \text{Mode III}_{m} & = & 133\\ \text{Mode III}_{s} & = & 85\\ \text{Mode IV} & = & 104\\ \hline \hline & \text{Adjustment Factors} \end{array}$					
Mode III _s = 85 Mode IV = 104 <u>Adjustment Factors</u>					
Mode IV = 104 Adjustment Factors					
Adjustment Factors	lbf	<== Minimum Value			
	lbf				
$C_D = 1.6$		\mathbf{C}_{Δ}	=	1.0	
Wet Service Facto	•	Is fastener installed	in end grain?	No	
Fabrication/In-Service Dry/I	ry	C _{eg}	=	1.00	
C _M = 1.0		Is fastener part of a	a diaphragm?	No	
In service temperature	T≤100°F	C _{di}	=	1.0	
C _t = 1.0		Is fastene	er toe-nailed?	No	
C _g = 1.0		C _{tn}	=	1.00	
Adjusted Design Value, Z					
$\frac{Aujusteu Design Value, Z}{Z' = 136}$					

Alternate Installation – Strap Anchor to Wood

Anchor:	(2)#8 x 1-1/2" Flat head screw securing the 1/4" max shim space	strap to the substrate					
Details:	20 gauge (0.036" thick) 33 KSI steel strap ar strap to the frame 0.719" thick wood frame						
Substrate: Spruce-Pine-Fir 2x Wood Substrate (G = 0.42 min.)							
Wood Screw Capacity (Shear)							
Z' = <u>125</u>	<u>lb</u>	(See Following Page)					
Bending of #8 x 1-1/2" flat head screw L = 1/4" (maximum shim space) S = $\pi d^3 / 32 = \pi (0.131")^3 / 32 = 0.000221 in^3$							
	$(0.6 F_y) = (1.3)(0.6)(90,000 \text{ psi}) = 70,200 \text{ psi}$	(1.3 for weak axis bending)					

(L/2 for guided bending)

F_b = M / S = (V) (L/2) / S V = 2 S F_b / L = (2)(0.000221 in3)(70,200 psi) / 1/4" V = <u>124 lb</u>

Bearing Capacity (of #8 screw on frame)

 $P_b = F_e D t / K_D = (3,350 \text{ psi})(0.164")(0.719")/(10(0.164) + 0.5) = 184 \text{ lb}$

<u>Bearing Capacity</u> (of strap anchor)

P_b = 2.7 D t F_{tu} = 2.7(0.164")(0.036")(45,000 psi) = 717 lb

P_{allow} = 717 lb / 3.0 = <u>239 lb</u>

Design Capacity of the Connection = 125 lb x 2 = 250 lb

Lateral Design Strength of Wood Connections

<u>Data</u>

Data							1
<u>Fastener</u>					Project:	Contours Steel	ISW
Fastener = #8 Wood Screw			Comments:	Strap Anchor			
Shank Dia	=	0.164	in.			1-1/2" min emb	pedment
Root Dia.	=	0.131	in.				
F _{yb}	=		psi				
Fastener length	=	1.500	in.				
<u>Main Member</u>				Side Mem	<u>ber</u>		
Material	=		SPF	Material	=	ASTM A	36 Steel
G	=	0.42		G		N/A	
θ	=	90		θ		90	
F _e	=	3,350	psi	F _{es}	=	87,000	psi
Thickness	=	1.500	in.	Thickness	=	0.036	in.
Calculations							
Lateral Bearing	Factors	1					
D	=	0.131	in.	k ₁	=	0.5714	
ℓ_{m}	=	1.300	in.	k ₂		0.5076	
ν _m K _θ	=	1.25		k ₃		22.18	
K _D	=	2.20		R _d		2.20	(Mode I _m , I _s)
R _e	=	0.039		R _d		2.20	(Mode II)
R _t	=	36.11		R _d		2.20	(Mode III _m , III _s , I
				u			
Lateral Design V			11.0				
Mode I _m	=	259	lbf				
Mode I _s	=	186	lbf				
Mode II	=	107	lbf				
Mode III _m	=	122	lbf				
Mode III _s	=	78	lbf	<== Minimum Value			
Mode IV	=	109	lbf				
Adjustment Fac	tors						
C _D	=	1.6		C_{Δ}		1.0	
		e Factor		Is fastener installed	in end grain?	No	
Fabrication/In	-Service	Dry/Dry		C _{eg}		1.00	
C _M	=	1.0		Is fastener part of	a diaphragm?	No	
In service temp	perature		100°F	C _{di}	=	1.0	
Ct	=	1.0		Is fasten	er toe-nailed?	-	
C_{g}	=	1.0		C _{tn}	=	1.00	
Adjusted Design	Value.	Z					
Z'	=	<u>125</u>	lbf				

Alternate Installation – Through-Frame to Concrete

- Anchor: 3/16" Tapcon Anchor
 - 1-1/4" min embedment
 - 2-1/2" min edge distance
 - 3" min anchor spacing
 - 1/4" max shim space
- Details: Through the Wood Frame - 0.719" thick
- Substrate: 3,000 psi Concrete

Anchor Capacity (Shear of 3/16" Tapcon)

$$P_{ss} / \Omega = 181 lb$$
 (NOA-No. 16-1222.06)

Bearing Capacity (of Wood frame)

 $P_b = F_e D t / K_D = (3,350 \text{ psi})(0.170'')(0.719'')/(10(0.170) + 0.5) = <u>194 \text{ lb}</u>$

Bending Capacity(of 3/16" Tapcon)L = 1/4" (maximum shim space) $S = \pi d^3 / 32 = \pi (0.170")^3 / 32 = 0.000482 in^3$ $F_b = (1.3)(0.6 F_y) = (1.3)(0.6)(137,000 psi) = 106,860 psi)$ (1.3 for weak axis bending) $F_b = M / S = (V) (L/2) / S$ $V = 2 S F_b / L = (2)(0.000482 in3)(106,860 psi) / 1/4"$ V = 412 lb

Design Capacity of the Connection = 181 lb

Alternate Installation – Through-Frame to CMU Block

- Anchor: 3/16" Tapcon Anchor
 - 1-1/4" min embedment
 - 2-1/2" min edge distance
 - 3" min anchor spacing
 - 1/4" max shim space
- Details: Through the Wood Frame - 0.719" thick
- Substrate: CMU Block

Anchor Capacity (Shear of 3/16" Tapcon)

$$P_{ss} / \Omega = 135 \text{ lb}$$
 (NOA-No. 16-1222.06)

Bearing Capacity (of Wood frame)

 $P_b = F_e D t / K_D = (3,350 \text{ psi})(0.170'')(0.719'')/(10(0.170) + 0.5) = <u>194 \text{ lb}</u>$

Bending Capacity(of 3/16" Tapcon)L = 1/4" (maximum shim space) $S = \pi d^3 / 32 = \pi (0.170")^3 / 32 = 0.000482 in^3$ $F_b = (1.3)(0.6 F_v) = (1.3)(0.6)(137,000 psi) = 106,860 psi)$ (1.3 for weak axis bending) $F_b = M / S = (V) (L/2) / S$ $V = 2 S F_b / L = (2)(0.000482 in3)(106,860 psi) / 1/4"$ V = 412 lb

Design Capacity of the Connection = 135 lb

Alternate Installation – Strap Anchor to Concrete

- Anchor: 3/16" Tapcon Anchor
 - 1-1/4" min embedment
 - 2-1/2" min edge distance
 - 3" min anchor spacing
 - 1/4" max shim space
- Details: 20 gauge (0.033" thick) 33 KSI steel strap anchor w/ two #8 screws securing the strap to the frame 1.00" thick wood frame
- Substrate: 3,000 psi Concrete

Anchor Capacity (Shear of 3/16" Tapcon)

$$P_{ss} / \Omega = 181 \text{ lb}$$

(NOA-No. 16-1222.06)

Bearing Capacity (of 3/16" Tapcon on strap anchor)

P_b = 2.7 D t F_{tu} = 2.7(0.170")(0.033")(45,000 psi) = 681 lb

P_{allow} = 681 lb / 3.0 = <u>227 lb</u>

Bearing Capacity (of #8 screw on frame)

 $P_b = F_e D t / K_D = (3,350 \text{ psi})(0.164'')(1.00'')/(10(0.164) + 0.5) = 257 \text{ lb}$

<u>Bearing Capacity</u> (of #8 screw on strap anchor)

 $P_b = 2.7 \text{ D t } F_{tu} = 2.7(0.164")(0.033")(45,000 \text{ psi}) = 657 \text{ lb}$

P_{allow} = 657 lb / 3.0 = <u>219 lb</u>

Bending Capacity (of 3/16" Tapcon)

L = 1/4" (maximum shim space) $S = \pi d^3 / 32 = \pi (0.170")^3 / 32 = 0.000482 in^3$ $F_b = (1.3)(0.6 F_y) = (1.3)(0.6)(137,000 \text{ psi}) = 106,860 \text{ psi}$ $F_b = M / S = (V) (L/2) / S$ $V = 2 S F_b / L = (2)(0.000482 in3)(106,860 \text{ psi}) / 1/4"$ $V = \underline{412 \text{ lb}}$ (1.3 for weak axis bending)

Design Capacity of the Connection = 181 lb (one concrete anchor per strap)

Alternate Installation – Strap Anchor to CMU Block

- Anchor: 3/16" Tapcon Anchor
 - 1-1/4" min embedment
 - 2-1/2" min edge distance
 - 3" min anchor spacing
 - 1/4" max shim space
- Details: 20 gauge (0.033" thick) 33 KSI steel strap anchor w/ two #8 screws securing the strap to the frame 1.00" thick wood frame
- Substrate: CMU Block

Anchor Capacity (Shear of 3/16" Tapcon)

$$P_{ss} / \Omega = 135 \text{ lb}$$

(NOA-No. 16-1222.06)

Bearing Capacity (of 3/16" Tapcon on strap anchor)

P_b = 2.7 D t F_{tu} = 2.7(0.170")(0.033")(45,000 psi) = 681 lb

P_{allow} = 681 lb / 3.0 = <u>227 lb</u>

Bearing Capacity (of #8 screw on frame)

 $P_b = F_e D t / K_D = (3,350 \text{ psi})(0.164'')(1.00'')/(10(0.164) + 0.5) = 257 \text{ lb}$

<u>Bearing Capacity</u> (of #8 screw on strap anchor)

P_b = 2.7 D t F_{tu} = 2.7(0.164")(0.033")(45,000 psi) = 657 lb

P_{allow} = 657 lb / 3.0 = <u>219 lb</u>

Bending Capacity (of 3/16" Tapcon)

L = 1/4" (maximum shim space) $S = \pi d^3 / 32 = \pi (0.170")^3 / 32 = 0.000482 \text{ in}^3$ $F_b = (1.3)(0.6 F_y) = (1.3)(0.6)(137,000 \text{ psi}) = 106,860 \text{ psi} \qquad (1.3 \text{ for weak axis bending})$ $F_b = M / S = (V) (L/2) / S \qquad (L/2 \text{ for guided bending})$ $V = 2 \text{ S } F_b / \text{ L} = (2)(0.000482 \text{ in}3)(106,860 \text{ psi}) / 1/4"$ $V = \underline{412 \text{ lb}}$

Design Capacity of the Connection = 135 lb (one concrete anchor per strap)

Alternate Installation – Strap Anchor to Wood (Cap Installation)

Anchor: (2) #8 x 1-1/2" Flat head screw securing the strap to the substrate

- Details: 20 gauge (0.033" thick) 33 KSI steel strap anchor w/ two #8 screws securing the strap to the frame 0.719" thick wood frame 1/4" max shim space
- Substrate: Spruce-Pine-Fir 2x Wood Substrate (G = 0.42 min.)

<u>Wood Screw Capacity</u> (Withdrawal)

W' = 1.6(82 lb/in)(1.5 in) = <u>197 lb</u>

Pull-over Capacity (of #8 screw on strap)

 $P_{nov} = 1.5 \text{ t d } F_{tu} = 1.5 (0.033'')(0.332'')(45,000 \text{ psi}) = 739 \text{ lb}$ $P_{allow} = 739 \text{ lb } / 3.0 = 246 \text{ lb}$

Bearing Capacity (of #8 screw on frame)

 $P_b = F_e D t / K_D = (3,350 psi)(0.164")(0.719")/(10(0.164) + 0.5) = <u>184 lb</u>$

Bearing Capacity (of #8 screw on strap anchor)

 $P_b = 2.7 \text{ D t } F_{tu} = 2.7(0.164")(0.033")(45,000 \text{ psi}) = 657 \text{ lb}$ $P_{allow} = 657 \text{ lb} / 3.0 = \underline{219 \text{ lb}}$

Design Capacity of the Connection = 184 lb (one screw)

Design Capacity of the Connection = 368 lb (two screws)

Anchorage Requirements

Series/Model:	Steel 25 GA W.E. Double Door with Fixed Sidelites
Test Unit Size:	184-7/8" x 81-3/4"
Design Pressure:	+35.0 / -35.0 psf

Through-Frame Installation Method

Through frame installation method is validated by the test

Through Frame Anchor Capacity = 136 lb / anchor

Alternate Installation Methods

Strap Anchor to Wood = 250 lb / anchor strap (Two wood screws per strap)

Through-Frame to Concrete = 181 lb / anchor

Through-Frame to CMU Block = 135 lb / anchor

Strap Anchor to Concrete = 181 lb / anchor

Strap Anchor to CMU Block = 135 lb / anchor

Strap Anchor to Wood (Cap Installation) = 184 lb / anchor

Minimum Alternate Installation Capacity = 135 lb / anchor

135 lb < 136 lb

- Approximately 0.8% difference, alternate anchorage is deemed equivalent

Alternate Anchorages OK at tested spacing

Revision Log

Rev. #	Date	Page(s)	Revision(s)	
0	9/22/2023	All	Original Report Issue	