

PRODUCT APPROVAL SUPPORTING CALCULATIONS

Series/Model: Contours Steel Wood Edge Opaque inswing w/Sidelites OXO

REPORT NO.: 27561.07-107-16

- RENDERED TO: Jeld-Wen Windows & Doors 3737 Lakeport Blvd Klamath Falls, Oregon
- PREPARED BY: Michael D. Stremmel, P.E.

Molimo, LLC 1410 Eden Road York, Pennsylvania 17402

REVISION 2 DATE: 4/23/2024

This item has been digitally signed and sealed by Michael D. Stremmel, PE on the date adjacent to the seal.

Printed copies of this document are not considered signed and sealed and the signature must be verified on electronic copies.

Michael D. Stremmel, P.E. Senior Project Engineer FL PE 65868 FL REG 37122

It is a violation to alter this document in any way unless acting under the direction of a licensed professional engineer.

SCOPE:

Molimo, LLC was contracted by Jeld-Wen Windows & Doors to evaluate alternate installation methods for their Contours Steel Wood Edge Opaque inswing w/Sidelites OXO. The evaluation is based on physical testing and product certifications.

Reference standards utilized in this project include:

Florida Building Code. International Code Council.

ANSI/AWC National Design Specification (NDS) for Wood Construction. American Wood Council.

AISI S100 North American Specification for the Design of Cold-Formed Steel Structural Members. American Iron and Steel Institute.

ICC-ES Report ESR-1976 ITW Buildex TEKS Self-Drilling Fasteners. ICC Evaluation Service.

NOA 21-0201.06 *Tapcon Concrete and Masonry Anchors with Advanced Threadform Technology*. Miami-Dade County Product Control Section.

The anchorage analysis presented herein does not address the water resistance, water penetration, or air infiltration performance of the installation method or the installed product. In addition, the analyses rely on the assumption that the building substrate is capable of withstanding the incurred loads.

Certification of Independence

In accordance with Rule 61G20-3 Florida Administrative Code, Molimo, LLC hereby certifies the following:

- Molimo, LLC does not have, nor does it intend to acquire or will it acquire, a financial interest in any company manufacturing or distributing products tested or labeled by the agency.
- Molimo LLC s is not owned, operated or controlled by any company manufacturing or distributing products it tests or labels.
- Michael D. Stremmel, P.E. does not have nor will acquire, a financial interest in any company manufacturing or distributing products for which the reports are being issued.
- Michael D. Stremmel, P.E does not have, nor will acquire, a financial interest in any other entity involved in the approval process of the product.

ANALYSES:

Summary of Test Results

Table 1 summarizes the various Contours Steel Wood Edge Opaque inswing w/Sidelites OXO products and their corresponding performance levels which have been established by testing or product certification.

Series/Model	Test Report Number	Size (W x H)	Performance
Jeld-Wen, INC. In-swing Steel	National Certified Testing		
24 GA W.E. Opaque Single	Laboratories Report No.	112-1/2" x 81-7/8"	+65 / -65 psf
Doors with Fixed Sidelites	NCTL-210-3801-2	(In-Swing)	(Wind Zone 4)
(Impact)	(2/4/2012)		
Jeld-Wen, INC. Out-swing	National Certified Testing		
Steel 24 GA W.E. Opaque	Laboratories Report No.	112-1/2" x 80-3/4"	+65 / -65 psf
Single Doors with Fixed	NCTL-210-3801-2	(Out-swing)	(Wind Zone 4)
Sidelites (Impact)	(2/4/2012)		

Table 1: Summar	y of Test Results
-----------------	-------------------

Testing documented in Table 1 was conducted by National Certified Testing Laboratories of Orlando, Florida (Florida Department of Business & Professional Regulation Test Lab No. TST1589 – laboratory was approved at the time of testing). The testing documented above is certified by NAMI under certification number NI012741-R1 (Expires 4/30/2028).

ANALYSES:

Summary of Test Results

Table 2: Plastics Checklist of Test Results

Product	Test Report Number	Test Standard	Test Results
Dylite Expandable Polystyrene	Intertek Report No. 3113726SAT-001 Rev. 1 (3/13/2009)	ASTM E84	Flame Spread: 35 Smoke Developed: 450
	Intertek Report No.	ASTM D638 (before and after G155)	+9.5%
White PVC 1476	P6504.01-106-18-R0	ASTM D1929	824°F (440°C)
5110	(8/23/2023)	ASTM D2843	71.8
		ASTM D635	Class CC1
	Intertek Report No. P6504.01-106-18-R0 (8/23/2023)	ASTM D638 (before and after G155)	+9.5%
White PVC 1476		ASTM D1929	806°F (430°C)
5290		ASTM D2843	72.6
		ASTM D635	Class CC1
		ASTM D638 (before and after G155)	-2.2%
SMC Skin	Element Report No.	ASTM D1929	770°F (410°C)
	ESP010982P (2/26/2013)	ASTM D2843	62
		ASTM D635	Class CC2

Testing documented in Table 2 was conducted by Intertek of York, Pennsylvania (Florida Department of Business & Professional Regulation Test Lab No. TST1558) and Intertek of Elmendorf, Texas (Florida Department of Business & Professional Regulation Test Lab No. TST1585) and Element Materials Technology of St Paul, Minnesota.

The test results listed in Table 2 meet the requirements listed in Miami-Dade County Checklist #0445, *For the Approval of: Plastic and Foam Plastic*.

Project No.:27561.07-107-16Project Name:Contours Steel Wood EdgeOpaque inswing w/Sidelites OXORevision 2 Date:4/23/2024Page 6 of 14

As-Tested Installation Analysis

For air/water/structural testing, the test specimen was secured to a Southern-Yellow-Pine wood test buck with #10 wood screws (1-1/2" min. embedment) at the head, sill, and jambs. The as tested installation method is evaluated on Pages 7 and 8. These capacities will be used to prove acceptable anchors and substrates for the product.

Alternate Anchorages

Calculations on Pages 9 through 15 determine the design capacity of alternate installation anchorages for the product.

Anchorages Requirements

As-tested spacing must be maintained. It must be determined that the anchorages are not overloaded for the approved product size and design pressures. Calculations presented on Page 16 show the alternate anchorages are acceptable for the established product performance.

Anchorage requirements established by this report are accurately presented in Drawing D1000369.

As-Tested Installation – Through Frame to Wood

- Anchor: #10 x 3" Wood Screw (1-1/2" min embedment})
- Details: 0.719" thick wood frame (G = 0.42) No shim space was utilized.
- Substrate: Southern Yellow Pine wood test buck (SYP, G = 0.55)

Wood Screw Capacity (Shear)

Z' = <u>143 lb</u>

(See Following Page)

Design Capacity of the Connection = 143 lb

Project No.:	27561.07-107-16
Project Name:	Contours Steel Wood Edge
	Opaque inswing w/Sidelites OXO
Revision 2 Date:	4/23/2024
	Page 8 of 14

> (Mode I_m, I_s) (Mode II) (Mode III_m, III_s, IV)

Lateral Design Strength of Wood Connections

Jucing						
				Project:	Contours Steel	Wood Edge
=	#10 Wo	ood Screw		-	Opaque Inswing	g W/Sidelites
=	0.190	in.		Comments :		
=	0.152	in.			1-1/2" min em	pedment
=	80,000	psi				
=	3.000	in.				
			Side Mem	ber		
=	5	SYP			SF	PF
=	0.55		G	=	0.42	
=	90		θ	=	90	
=	5,550	psi	F _{es}	=	3,350	psi
=	1.500	in.	Thickness	=	0.719	in.
ng Factors						
=	0.152	in.	k1	=	1.0460	
=			-			
=			-			
			5			(Mode I _m , I _s)
						(Mode II)
						(Mode III _m , III
			- 4		0	
		11-6				
			. M			
			<== Minimum value			
=	111	IDI				
<u>actors</u>						
=	1.6				1.0	
			Is fastener installed	in end grain?	No	
In-Service	Dry/Dry		-		1.00	
=	1.0		Is fastener part of	a diaphragm?	No	
nperature	T≤	100°F	C _{di}	=	1.0	
=	1.0		Is fasten	er toe-nailed?	No	
=	1.0		C _{tn}	=	1.00	
gn Value.	Z					
=	<u>143</u>	lbf				
	= = = = = = = = = = = = = = = = = = =	= #10 W(1) = 0.190 = 0.152 = 80,000 = 3.000 = 0.55 = 0.55 = 90 = 5,550 = 1.500 = 1.500 = 1.500 = 1.25 = 2.09 t Values. Z 1.657 = 1.657 = 1.657 = 1.657 = 1.657 = 1.657 = 1.657 = 1.657 = 1.657 = 1.657 = 1.657 = 1.657 = 1.657 = 1.657 = 1.657 = 1.657 = 1.6 Wet Service Factor Try In-Service Dry/Dry = 1.0 = 1.0 <	= #10 Wood Screw = 0.190 in. = 0.152 in. = 80,000 psi = 3.000 in. = 0.55 90 = 90 . = 90 . = 0.555 psi = 0.555 . = 90 . = 1.500 in. = 1.500 in. = 1.500 in. = 1.657 . = 2.09 . YAIUES. . . = 1.657 . = 1.657 . = 1.66 . = 1.66 . = 1.66 . = 1.6 . . 1.0 . = 1.0 . = 1.0 . = 1.0 .	= 0.190 in. = 0.152 in. = 3.000 in. = 3.000 in. = 0.55 G = 90 θ = 90 θ = 5,550 psi F_{es} = 1.500 in. Thickness seg Factors in. k1 = 0.152 in. k1 = 1.25 k3 = 1.25 k3 = 2.20 Rd = 1.657 Rd = 1.657 Rd = 1.657 Rd = 1.657 Isf = 1.66 Ibf = 1.66 Ibf = 1.66 Ibf = 1.6 C_{\Delta} Net Service Factor Is fastener installed In-Service Dry/Dry C_{eg} = 1.0 Is fastener =	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	

Alternate Installation – Strap Anchor to Wood

Anchor:	(2) #10 x 2" Flat head screw securing the str 1/4" max shim space	ap to the substrate		
Details: 20 gauge (0.033" thick) 33 KSI steel strap strap to the frame 1-1/2" thick wood frame		nchor w/ two #10 screws securing the		
Substrate: Spruce-Pine-Fir 2x Wood Substrate (G = 0.42 min.)				
<u>Wood Scre</u>	<u>w Capacity</u> (Shear)			
Z' = <u>155</u>	<u>lb</u>	(See Following Page)		
<u>Bending of</u>	#10 x 2" flat head screw			
L = 1/4" (maximum shim space)				
S = π d ³ / 32 = π (0.145") ³ / 32 = 0.000299 in ³				
$F_b = (1.3)(0.6 F_y) = (1.3)(0.6)(90,000 \text{ psi}) = 70,200 \text{ psi}$ (1.3 for weak axis benc				
$F_b = M / S = (V) (L/2) / S$ (L/2 for guided bending				

V = 2 S F_b / L = (2)(0.000299 in3)(70,200 psi) / 1/4"

V = <u>168 lb</u>

Bearing Capacity (of #10 screw on frame)

 $P_b = F_e D t / K_D = (3,350 psi)(0.164")(0.719")/(10(0.164) + 0.5) = <u>184 lb</u>$

<u>Bearing Capacity</u> (of strap anchor) $P_b = 2.7 \text{ D t F}_{tu} = 2.7(0.164")(0.033")(45,000 \text{ psi}) = 657 \text{ lb}$ $P_{allow} = 657 \text{ lb} / 3.0 = 219 \text{ lb}$

Design Capacity of the Connection = 155 lb per anchor

Project No.:	27561.07-107-16
Project Name:	Contours Steel Wood Edge
	Opaque inswing w/Sidelites OXO
Revision 2 Date:	4/23/2024
	Page 10 of 14

Lateral Design Strength of Wood Connections

Fastener Fastener Shank Dia Root Dia. F _{yb} Fastener length <u>Main Member</u> Material G	= = = =	0.190 0.152 80,000 1.500	ood Screw in. in. psi in.		Project: Comments:	Contours Steel Opaque Inswing Steel Strap Inst 1-1/2" min emb	g w/Sidelites allation
Shank Dia Root Dia. F _{yb} Fastener length <u>Main Member</u> Material	= = = =	0.190 0.152 80,000 1.500	in. in. psi		Comments:	Steel Strap Inst	allation
Root Dia. F _{yb} Fastener length <u>Main Member</u> Material	= = =	0.152 80,000 1.500	in. psi		Comments:		
F _{yb} Fastener length <u>Main Member</u> Material	= = =	80,000 1.500	psi			1-1/2" min emł	
Fastener length <u>Main Member</u> Material	=	1.500				/	pedment
<u>Main Member</u> Material	=		in.				
Material		C					
		C		Side Mem	ber		
C	=	5	PF	Material	=		Grade 33 Steel
		0.42		G	=	N/A	
θ	=	90		θ	=	90	
Fe	=	3,350	psi	Fes	=	61,850	psi
Thickness	=	1.500	in.	Thickness	=	0.033	in.
Calculations							
Lateral Bearing F	actors						
D	=	0.152	in.	\mathbf{k}_1	=	0.8550	
ℓ_{m}	=	1.277	in.	k ₂	=	0.5357	
K _θ	=	1.25		k3	=	26.07	
K _D	=	2.20		R _d	=	2.20	(Mode I _m , I _s)
Re	=	0.054		R _d	=	2.20	(Mode II)
R _t	=	38.70		R _d		2.20	(Mode III _m , III _s , IV)
Lateral Design Va	dues. Z						
Mode I _m	=	296	lbf				
Mode Is	=	141	lbf				
Mode II	=	121	lbf				
Mode III _m	=	143	lbf				
Mode III _s	=	97	lbf	<== Minimum Value			
Mode IV	=	137	lbf				
Adjustment Facto	ors						
C _D	=	1.6		\mathbf{C}_{Δ}	=	1.0	
Wet	Service	e Factor		Is fastener installed	in end grain?	No	
Fabrication/In-S	Service	Dry/Dry		C _{eg}	=	1.00	
C _M	=	1.0		Is fastener part of	a diaphragm?	No	
In service tempe	erature	T≤î	100°F	C _{di}	=	1.0	
C _t	=	1.0		Is fasten	er toe-nailed?	No	
$C_{ m g}$	=	1.0		C _{tn}	=	1.00	
Adjusted Design V	Value, Z	<u>z</u>					
Z'	=	<u>155</u>	lbf				

Page 11 of 14

Alternate Installation – Through-Frame to Concrete

- Anchor: 3/16" Tapcon Anchor
 - 1-1/4" min embedment
 - 2-1/2" min edge distance
 - 4" min anchor spacing
 - 1/4" max shim space

Details: Through the Wood Frame - 1" thick

Substrate: 3,000 psi Concrete

Anchor Capacity (Shear of 3/16" Tapcon)

$$P_{ss} / \Omega = 181 lb$$

(NOA-No. 16-1222.06)

Bearing Capacity (of Wood frame)

 $P_b = F_e D t / K_D = (3,350 \text{ psi})(0.170")(1.00")/(10(0.170) + 0.5) = 259 \text{ lb}$

Bending Capacity(of 3/16" Tapcon)L = 1/4" (maximum shim space) $S = \pi d^3 / 32 = \pi (0.170")^3 / 32 = 0.000482 in^3$ $F_b = (1.3)(0.6 F_y) = (1.3)(0.6)(137,000 psi) = 106,860 psi)$ (1.3 for weak axis bending) $F_b = M / S = (V) (L/2) / S$ $V = 2 S F_b / L = (2)(0.000482 in3)(106,860 psi) / 1/4"$ V = 412 lb

Design Capacity of the Connection = 181 lb

Page 12 of 14

<u>Alternate Installation – Through-Frame to CMU Block</u>

Anchor:	 1/4" Tapcon Anchor 1-1/4" min embedment 2-1/2" min edge distance 4" min anchor spacing 1/4" max shim space 				
Details:	Through the Wood Frame - 1" thick				
Substrate:	CMU Block				
<u>Anchor Ca</u>	pacity (Shear of 1/4" Tapcon)				
P_{ss} / Ω =	= <u>161 lb</u>	(NOA-No. 16-1222.06)			
Bearing Ca	pacity (of Wood frame)				
$P_b = F_e I$	D t /K _D = (3,350 psi)(0.190")(1.00")/(10(0.190)) + 0.5) = <u>265 lb</u>			
Bending C	apacity (of 1/4" Tapcon)				
L = 1/4"	(maximum shim space)				
$S = \pi d^3$	S = $\pi d^3 / 32 = \pi (0.190'')^3 / 32 = 0.000673 in^3$				
$F_b = (1.3)(0.6 F_y) = (1.3)(0.6)(137,000 \text{ psi}) = 106,860 \text{ psi}$ (1.3 for weak axis bendir					
$F_b = M / S = (V) (L/2) / S$ (L/2 for guided bending)					
V = 2 S F _b / L = (2)(0.000673 in3)(106,860 psi) / 1/4"					
V = <u>575</u>	V = <u>575 lb</u>				

Design Capacity of the Connection = 161 lb

Alternate Installation – Strap Anchor to Concrete

Anchor: 3/16" Tapcon Anchor
- 1-1/4" min embedment
- 2-1/2" min enchor spacing
- 1/4" max shim space
Details: 20 gauge (0.033" thick) 33 KSI steel strap anchor w/ two #8 screws securing the
strap to the frame
1.00" thick wood frame
Substrate: 3,000 psi Concrete
Anchor Capacity (Shear of 3/16" Tapcon)
Pss /
$$\Omega = \underline{181 \text{ lb}}$$
 (NOA-No. 16-1222.06)
Bearing Capacity (of 3/16" Tapcon on strap anchor)
Pb = 2.7 D t Ftu = 2.7(0.170")(0.033")(45,000 psi) = 681 lb
Pallow = 681 lb / 3.0 = 227 lb
Bearing Capacity (of #10 screw on frame)
Pb = Fe D t /KD = (3,350 psi)(0.190")(1.00")/(10(0.164) + 0.5) = 257 lb
Bearing Capacity (of #8 screw on strap anchor)
Pb = 2.7 D t Ftu = 2.7(0.164")(0.033")(45,000 psi) = 657 lb
Pallow = 657 lb / 3.0 = 219 lb
Beanding Capacity (of 3/16" Tapcon)
L = 1/4" (maximum shim space)
S = π d³ / 32 = π (0.170")³ / 32 = 0.000482 in³
Fb = (1.3)(0.6 Fy) = (1.3)(0.6)(137,000 psi) = 106,860 psi (1.3 for weak axis bending)
Fb = M / S = (V) (L/2) / S (L/2 for guided bending)
V = 2 S Fb / L = (2)(0.000482 in3)(106,860 psi) / 1/4"
V = 412 lb

Design Capacity of the Connection = 181 lb (one concrete anchor per strap)

Page 14 of 14

Alternate Installation – Strap Anchor to CMU Block

Anchor:	 1/4" Tapcon Anchor 1-1/4" min embedment 2-1/2" min edge distance 4" min anchor spacing 1/4" max shim space 				
Details:	20 gauge (0.033" thick) 33 KSI steel strap as strap to the frame 1.00" thick wood frame	nchor w/ two #10 screws securing the			
Substrate:	CMU Block				
<u>Anchor Ca</u>	<u>pacity</u> (Shear of 1/4" Tapcon)				
P_{ss} / Ω	= <u>161 lb</u>	(NOA-No. 16-1222.06)			
Bearing Ca	apacity (of 1/4" Tapcon on strap anchor)				
P _b = 2.7	D t F _{tu} = 2.7(0.190")(0.033")(45,000 psi) = 76	2 lb			
P _{allow} =	762 lb / 3.0 = <u>254 lb</u>				
Bearing Ca	apacity (of #10 screw on frame)				
$P_b = F_e$	D t /K _D = (3,350 psi)(0.145")(1.00")/(10(0.164) + 0.5) = <u>227 lb</u>			
Bearing Ca	apacity (of #10 screw on strap anchor)				
P _b = 2.7	D t F _{tu} = 2.7(0.145")(0.033")(45,000 psi) = 58	1 lb			
$P_{allow} =$	lb / 3.0 = <u>194 lb</u>				
Bending C	apacity (of 1/4" Tapcon)				
L = 1/4'	' (maximum shim space)				
$S = \pi d^3$	S = π d ³ / 32 = π (0.190") ³ / 32 = 0.000673 in ³				
$F_{b} = (1.3)$	3)(0.6 F _y) = (1.3)(0.6)(137,000 psi) = 106,860 p	osi (1.3 for weak axis bending)			
$F_b = M$	/ S = (V) (L/2) / S	(L/2 for guided bending)			
V = 2 S F _b / L = (2)(0.000673 in3)(106,860 psi) / 1/4"					
V = <u>575 lb</u>					

Design Capacity of the Connection = 161 lb (one concrete anchor per strap)

Alternate Installation – Strap Anchor to Wood (Cap Installation)

- Anchor: Two #8 x 1-1/2" Flat head screw securing the strap to the substrate
- Details: 20 gauge (0.033" thick) 33 KSI steel strap anchor w/ two #8 screws securing the strap to the frame 1.00" thick wood frame 1/4" max shim space
- Substrate: Spruce-Pine-Fir 2x Wood Substrate (G = 0.42 min.)

Wood Screw Capacity (Withdrawal)

W' = 1.6(82 lb/in)(1.5 in) = <u>197 lb</u>

Pull-over Capacity (of #8 screw on strap)

 $P_{nov} = 1.5 \text{ t d } F_{tu} = 1.5 (0.033'')(0.332'')(45,000 \text{ psi}) = 739 \text{ lb}$

 $P_{allow} = 739 \text{ lb} / 3.0 = 246 \text{ lb}$

Bearing Capacity (of #8 screw on frame)

 $P_b = F_e D t / K_D = (3,350 \text{ psi})(0.164")(1.00")/(10(0.164) + 0.5) = 257 \text{ lb}$

Bearing Capacity (of #8 screw on strap anchor)

P_b = 2.7 D t F_{tu} = 2.7(0.164")(0.033")(45,000 psi) = 657 lb

P_{allow} = 657 lb / 3.0 = <u>219 lb</u>

Design Capacity of the Connection = 197 lb (one screw)

Design Capacity of the Connection = 394 lb (two screws)

Anchorage Requirements

Series/Model:	Contours Steel Wood Edge Opaque inswing w/Sidelites OXO
Test Unit Size:	112-1/2" x 81-7/8", 112-1/2" x 80-3/4"
Design Pressure:	+65.0 / -65.0 psf (112-1/2" x 81-7/8")
	+65.0 / -65.0 psf (112-1/2" x 80-3/4")

Through-Frame Installation Method

Through frame installation method is validated by the test

Through Frame Anchor Capacity = 143 lb / anchor

Alternate Installation Methods

Strap Anchor to Wood = 155 lb / anchor

Through-Frame to Concrete = 181 lb / anchor

Through-Frame to CMU Block = 161 lb / anchor

Strap Anchor to Concrete = 181 lb / anchor

Strap Anchor to CMU Block = 161 lb / anchor

Strap Anchor to Wood (Cap Installation) = 197 lb / anchor

Minimum Alternate Installation Capacity = 143 lb / anchor

155 lb > 143 lb

Alternate Anchorages OK at tested spacing

Revision Log

Rev. #	Date	Page(s)	Revision(s)
0	11/17/2023	All	Original Report Issue
1	2/1/2024	All	Added Table 2 for the Plastic Checklist test results
2	4/23/2024	Page 5	Updated Table 2