L. Roberto Lomas P.E.

1432 Woodford Rd. Lewisville, NC 27023 434-688-0609

rllomas@Irlomaspe.com

Test Report: N/A

Product: Single door 3'x6'8" (Composite frame)

This analysis provides calculations, quantities, and spacing requirements for installing product to substrate, and it applies only to the product described herein. These calculations comply with requirements of the Florida Building Code.

Anchor capacity in shear condition:

Solid members w/ & w/out gap:

a. With threads present in shear plane

Fastener type: #	10 wood	screw	(NDS 2012, TR12)		
Nominal diameter:	D:	0.190 in	Gap:	g:	0.0000 in
Root diameter:	Dr:	0.152 in	Moment arm:		0.0000 in
Minimum required penetration:	p:	1.140 in	Screw bending yield strength:	F _{yb} =	80,000 psi
Side member: P	VC		Main member:	Spruce-Pir	ne-Fir (G=0.42)
Side member thickness:	† _s =	1.000 in	Main member thickness:	† _m =	1.500 in
Side member dowel bearing strength:	F _{es} =	10,000 psi	Main member dowel bearing strength:	F _{em} =	3,350 psi
Side member dowel bearing length:	l _s =	1.000 in	Main member dowel bearing length:	I _m =	1.140 in

Manufacturer: Masonite

Report #: 514014

Date: 05/01/2017

Mod	de I _m	Mode	: I _s	Mod	e II	Mode	TTT ^m	Mode	IIIs	Mode	IV
qm =	636.5 lbs/in	qs =	1900 lbs/in	A :	0.0005	A:	0.00066	A:	0.00092	A:	0.001
P =	725.61 lbs	P =	1900 lbs	В:	1.07	В:	0.57	B:	0.5	В:	0.000
K _D =	2.400	K _D =	2.400	C :	-681.8	<i>C</i> :	-253.62	<i>C</i> :	-521.82	<i>C</i> :	-93.6
Z _m =	302 lbs	Z _s =	792 lbs	P =	510 lbs	Ms =	46.8 in-lbs	Mm =	46.8 in-lbs		
				K _D =	2.400	P =	324 lbs	P =	529 lbs	P =	299 lbs
	Min. Design value:	Z=	125 lbs	Z=	212 lbs	K _D =	2.400	K _D =	2.400	K _D =	2.400
	Duration Factor:	C _D =	1.6			Z=	135 lbs	Z=	221 lbs	Z=	125 lbs
	Allowable De	sign Valu	z (ZC _D): Z'=	199	lbs/anchor						

Fastener type: 1	/4" ITW Ta	pcon N	I.O.A. 16-1	222.06	
Substrate: H	Hollow block	Minimum embe	edment:		1.25 in
Edge distance:	4.00 in	Tabulated shear design value:	Z =	202 lbs	
Edge distance:	2.00 in	Tabulated shear design value:	Z =	161 lbs	
Actual edge distance:	2.50 in	Reduction factor:		0.85	
Spacing:	4.00 in	Tabulated shear design value:	Z =	202 lbs	
Spacing:	2.00 in	Tabulated shear design value:	Z =	164 lbs	
Actual spacing:	3.00 in	Reduction factor:		0.91	
Allowable Design Value (Zf_{AN}):	Z''=	155 lbs/anchor			

Fastener type:	#10 5	self tapping screw	(Calculations per 2010 Aluminum Design Mo	anual, se	ction J.5.6)			
Nominal screw diameter:	D:	0.190 in	Screw root area:	A_r	0.0151 in ²			
Actual edge distance:	de:	1.085 in	Screw shear ultimate strength:	F_{su}	54.0 ksi			
			Per table J3.2 of 2010 Steel Construction Manual 14th Edi					
Side member material: Vinul PVC			Main member material: 60	63_T5	aluminum			

Side member material: Vinyl PVC		Main memb	er material: 600	63-T5 (aluminum
Thickness: t_1 1.000 in			Thickness:	†2	0.052 in
Ultimate tensile strength: F _{tu1} 14 ksi		Ultimate tens	ile strength:	F_{tu2}	22 ksi
Nominal strength per bearing (side member): Rn = 2Dt ₁ F _{tu1}	Rn1 =	5320 lbs	(Eq J.5-12)		
Nominal strength per bearing (main member): Rn = 2Dt ₂ F _{tu2}	Rn2 =	435 lbs	(Eq J.5-12)		
Nominal strength per tilting: Rn = 4.2(t ₂ ³ D) ^{1/2} F _{tu2}	Rn =	478 lbs	(Eq J.5-13)		
Nominal screw shear strength: Rn = $A_rF_{su}/1.25$	Rn =	654 lbs	(Eq J.5-14)		

Safety	factor:	$\Omega = 3$
Allowable shear and bearing canacity:	P	145 lbs/anchon

Fastener type:	#10 Self tapping screw	(Calculation	ns per AISI-Si	100-07, sections	A2.3.2 an	d E4.3.1)
Nominal screw diameter:	D: 0.190 in	Scr	ew shear ultim	ate strength:	F_{su}	54.0 ksi
Screw root area:	$A_{\rm r} = 0.0151 \text{in}^2$	Per table J	3.2 of 2010 St	teel Construction	Manual 1	4.1 - 1
Side member mo	iterial: Vinyl PVC		Main memb	oer material: M	etal fram	
Thickness:	t_1 1.000 in			Thickness:	†2	
Ultimate tensile strength:	F _{u1} 14 ksi		Ultimate ten	sile strength:	F_{u2}	11,
Nominal strength per	tilting: Rn = $4.2(t_2^3D)^{1/2}F_{u2}$	Rn =	1001 lbs	(Eq E4.3.1-1))	11.1
Nominal strength per bearing (side me	ember): Rn = 2.7Dt ₁ F _{u1}	Rn1 =	7182 lbs	(Eq E4.3.1-2	and -4)	3.
Nominal strength per bearing (main me	ember): Rn = 2.7Dt ₂ F _{u2}	Rn2 =	1280 lbs	(Eq E4.3.1-3	and -5)	三大
Nominal screw shear str	rength: $Rn = A_r F_{su} / 1.25$	Rn =	654 lbs			= :
Safety	factor: $\Omega = 3$					=2
	n					

218 lbs/anchor Allowable shear and bearing capacity:

145 lbs/anchor Minimum anchor capacity:

Note: Anchors with the least capacity is used for calculations to qualify anchors with higher capacity.

Luis R. Lomas P.E. FL No.: 62514

5/3/2017

L. Roberto Lomas P.E.

1432 Woodford Rd. Lewisville, NC 27023 434-688-0609

rllomas@Irlomaspe.com

Manufacturer: Masonite Report #: 514014 Date: 05/01/2017

Anchor calculations, minimum required anchors

36.38

79.25

	Area	Load	Ind.	Max.		Anchor		
Zone	(ft ²)	(lbs)	(in)	O.C. (in)	Cap. (lbs)	Qty	Load (lbs)	Result
A_1	2.3	195	N/A	N/A	145	2	98	OK
A ₂	7.7	656	6.00	18.00	145	5	131	OK

85.0 psf

Design pressure:

Anchor Locations:

Installation instructions:

- 1. FOR ANCHORING THROUGH FRAME INTO WOOD FRAMING OR 2X BUCK USE #10 WOOD SCREWS WITH SUFFICIENT LENGTH TO ACHIEVE A 1 1/4" MINIMUM EMBEDMENT INTO SUBSTRATE WITH 1/2" MINIMUM EDGE DISTANCE. LOCATE ANCHORS AS SHOWN BELOW.
- 2. FOR ANCHORING THROUGH FRAME INTO MASONRY/CONCRETE USE 3/16" TAPCONS WITH SUFFICIENT LENGTH TO ACHIEVE A 1 1/4" MINIMUM EMBEDMENT INTO SUBSTRATE WITH 2 1/2" MINIMUM EDGE DISTANCE. LOCATE ANCHORS AS SHOWN BELOW.
- 3. FOR ANCHORING THROUGH FRAME INTO METAL STRUCTURE USE #10 SMS OR SELF DRILLING SCREWS WITH SUFFICIENT LENGTH TO ACHIEVE 3 THREADS MINIMUM BEYOND STRUCTURE INTERIOR WALL WITH 1/2" MINIMUM EDGE DISTANCE. LOCATE ANCHORS AS SHOWN BELOW.
- 4. ALL FASTENERS TO BE CORROSION RESISTANT.
- 5. INSTALLATION ANCHORS SHALL BE INSTALLED IN ACCORDANCE WITH ANCHOR MANUFACTURER'S INSTALLATION INSTRUCTIONS AND ANCHORS SHALL NOT BE USED IN SUBSTRATES WITH STRENGTHS LESS THAN THE MINIMUM STRENGTH SPECIFIED BELOW: A. WOOD: MINIMUM SPECIFIC GRAVITY OF G=0.42
 - B. CONCRETE: MINIMUM COMPRESSIVE STRENGTH OF 2,000 PSI.
 - C. MASONRY: HOLLOW/FILLED BLOCK PER ASTM C90 WITH Fm=2,000PSI MINIMUM.
 - D. METAL STRUCTURE: STEEL 18GA (.048") FY=33KSI/FU=52KSI OR ALUMINUM 6063-T5 FU=30KSI .052" THICK MINIMUM
- 6. ANCHOR LOCATIONS SHOWN IN THIS DOCUMENT ARE THE MINIMUM REQUIRED FOR THE DESCRIBED PRODUCT EXPOSED AT THE DESIGN PRESSURE INDICATED HEREIN.

Luis R. Lomas P.E. FL No.: 62514

5/3/2017