L. Roberto Lomas P.E.

1432 Woodford Rd.	Manufacturer: Masonite
Lewisville, NC 27023	Report \#: 514014
434-688-0609	Date: 05/01/2017
rllomas@Irlomaspe.com	
Test Report: N / AProduct: Single door $3^{\prime} \times 6^{\prime} 8$ " (Composite frame)	
This analysis provides ca the product described he Anchor capacity in she	ct to substrate, and it applie ilding Code.

Solid members w/ \& w/out gap:

a. With threads present in shear plane

| Fastener type: | \#10 wood screw | |
| ---: | ---: | ---: | ---: |
| Nominal diameter: | $\mathrm{D}:$ | 0.190 in |
| Root diameter: | $\mathrm{Dr}:$ | 0.152 in |
| Minimum required penetration: | $\mathrm{p}:$ | 1.140 in |
| Side member: PVC | | |
| Side member thickness: | $\mathrm{f}_{\mathrm{s}}=$ | 1.000 in |
| Side member dowel bearing strength: | $\mathrm{F}_{\mathrm{es}}=$ | $10,000 \mathrm{psi}$ |
| Side member dowel bearing length: | $\mathrm{I}_{\mathrm{s}}=$ | 1.000 in |

(NDS 2012, TR12)

Gap:	$g: \quad 0.0000$ in	
Moment arm:		0.0000 in
Screw bending yield strength:	$F_{y b}=$	80,000 psi
Main member:	Spruce-Pine-Fir $(G=0.42)$	
Main member thickness:	$\mathrm{t}_{\mathrm{m}}=$	1.500 in
Main member dowel bearing strength:	$\mathrm{F}_{\mathrm{em}}=$	$3,350 \mathrm{psi}$
Main member dowel bearing length:	$\mathrm{I}_{\mathrm{m}}=$	1.140 in

Mode I_{m}		Mode $\mathrm{I}_{\text {s }}$		Mode II		Mode III $_{\text {m }}$		Mode III $_{\text {s }}$		Mode IV	
qm =	$636.5 \mathrm{lbs} / \mathrm{in}$	qs =	$1900 \mathrm{lbs} / \mathrm{in}$	A:	0.0005	A:	0.00066	A:	0.00092	A:	0.001
$P=$	725.61 lbs	$\mathrm{P}=$	1900 lbs	B :	1.07	B:	0.57	B :	0.5	B:	0.000
$K_{D}=$	2.400	$K_{\text {D }}=$	2.400	C :	-681.8	C :	-253.62	C:	-521.82	C:	-93.6
$\mathrm{Z}_{\mathrm{m}}=$	302 lbs	$\mathrm{Z}_{\text {s }}=$	792 lbs	$\mathrm{P}=$	510 lbs	Ms =	46.8 in-lbs	$\mathrm{Mm}=$	46.8 in-lbs		
				$K_{D}=$	2.400	$P=$	324 lbs	$P=$	529 lbs	$P=$	299 lbs
	Min. Design value:	Z=	125 lbs	Z=	212 lbs	$K_{D}=$	2.400	$\mathrm{K}_{\mathrm{D}}=$	2.400	$K_{D}=$	2.400
	Duration Factor:	$C_{\text {D }}=$	1.6			Z=	135 lbs	Z=	221 lbs	Z=	125 lbs

Allowable Design Value $\left(Z C_{D}\right)$: $\quad Z^{\prime}=\quad 199 \mathrm{lbs} /$ anchor

L. Roberto Lomas P.E.

1432 Woodford Rd.
Manufacturer: Masonite
Lewisville, NC 27023
Report \#: 514014
434-688-0609
Date: 05/01/2017
rllomas@lrlomaspe.com

Anchor calculations, minimum required anchors

36.38	79.25	Design pressure: 85.0 psf								
		Zone	$\begin{aligned} & \text { Area } \\ & \left(f t^{2}\right) \end{aligned}$	$\begin{aligned} & \text { Load } \\ & \text { (lbs) } \end{aligned}$	Ind. (in)	Max. O.C. (in)	Anchor			Result
							$\begin{aligned} & \hline \text { Cap. } \\ & \text { (lbs) } \end{aligned}$	Qty	$\begin{aligned} & \text { Load } \\ & \text { (lbs) } \end{aligned}$	
$\lambda^{\text {a }}{ }^{\text {2 }}$		A_{1}	2.3	195	N/A	N/A	145	2	98	OK
\checkmark A1 ${ }^{1}$		A_{2}	7.7	656	6.00	18.00	145	5	131	OK

Anchor Locations:

Installation instructions:

1. FOR ANCHORING THROUGH FRAME INTO WOOD FRAMING OR 2 X BUCK USE \#10 WOOD SCREWS WITH SUFFICIENT LENGTH TO ACHIEVE A 1 1/4" MINIMUM EMBEDMENT INTO SUBSTRATE WITH 1/2" MINIMUM EDGE DISTANCE. LOCATE ANCHORS AS SHOWN BELOW.
2. FOR ANCHORING THROUGH FRAME INTO MASONRY/CONCRETE USE 3/16" TAPCONS WITH SUFFICIENT LENGTH TO ACHIEVE A 1 1/4" MINIMUM EMBEDMENT INTO SUBSTRATE WITH 2 1/2" MINIMUM EDGE DISTANCE. LOCATE ANCHORS AS SHOWN BELOW.
3. FOR ANCHORING THROUGH FRAME INTO METAL STRUCTURE USE \#10 SMS OR SELF DRILLING SCREWS WITH SUFFICIENT LENGTH TO ACHIEVE 3 THREADS MINIMUM BEYOND STRUCTURE INTERIOR WALL WITH 1/2" MINIMUM EDGE DISTANCE. LOCATE ANCHORS AS SHOWN BELOW.
4. ALL FASTENERS TO BE CORROSION RESISTANT.
5. INSTALLATION ANCHORS SHALL BE INSTALLED IN ACCORDANCE WITH ANCHOR MANUFACTURER'S INSTALLATION INSTRUCTIONS AND ANCHORS SHALL NOT BE USED IN SUBSTRATES WITH STRENGTHS LESS THAN THE MINIMUM STRENGTH SPECIFIED BELOW: A. WOOD: MINIMUM SPECIFIC GRAVITY OF G=0.42
B. CONCRETE: MINIMUM COMPRESSIVE STRENGTH OF 2,000 PSI.
C. MASONRY: HOLLOW/FILLED BLOCK PER ASTM C90 WITH Fm=2,000PSI MINIMUM.
D. METAL STRUCTURE: STEEL 18GA (.048") FY=33KSI/FU=52KSI OR ALUMINUM 6063-T5 FU=30KSI .052" THICK MINIMUM
6. ANCHOR LOCATIONS SHOWN IN THIS DOCUMENT ARE THE MINIMUM REQUIRED FOR THE DESCRIBED PRODUCT EXPOSED AT THE DESIGN PRESSURE INDICATED HEREIN.

Luis R. Lomas P.E.
FL No.: 62514
5/3/2017

