1432 Woodford Rd. Lewisville, NC 27023 434-688-0609

rllomas@Irlomaspe.com

Test Report: N/A

Product: Double Door with and without sidelites 12'x8' (composite frame)

Scope:

This analysis provides calculations, quantities, and spacing requirements for installing product to substrate, and it applies only to the product described herein. These calculations comply with requirements of the Florida Building Code.

Anchor capacity in shear condition:

Solid members w/ & w/out gap:

a. With threads present in shear plane

Fastener type: #	10 wood	screw	(NDS 2012, NDS 2015, TR12)	
Nominal diameter:	D:	0.190 in	Gap: g:	0.0000 in
Root diameter:	Dr:	0.152 in	Moment arm:	0.0000 in
Minimum required penetration:	p:	1.140 in	Screw bending yield strength: F_{yb} =	80,000 psi
Side member: P	/C		Main member: Spruce-Pir	e-Fir (<i>G</i> =0.42)
Side member thickness:	† _s =	1.000 in	Main member thickness: $t_m =$	1.500 in
Side member dowel bearing strength:	F _{es} =	10,000 psi	Main member dowel bearing strength: F_{em} =	3,350 psi
Side member dowel bearing length:	l _s =	1.000 in	Main member dowel bearing length: $I_m =$	1.140 in

Mode I_m		Mode \mathbf{I}_s		Mod	le II	Mode	Mode III _m		$Mode\; III_{s}$		e IV
qm =	636.5 lbs/in	qs =	1900 lbs/in	A:	0.0005	A:	0.00066	A :	0.00092	A:	0.00105
P =	725.61 lbs	P =	1900 lbs	B:	1.07	В:	0.57	В:	0.5	B:	0.000
K _D =	2.400	K _D =	2.400	C :	-681.799	<i>C</i> :	-253.623	C :	-521.824	C :	-93.6
Z _m =	302 lbs	Z _s =	792 lbs	P =	510 lbs	Ms =	46.8 in-lbs	Mm =	46.8 in-lbs		
				K _D =	2.400	P =	324 lbs	P =	529 lbs	P =	299 lbs
	Min. Design value:	Z=	125 lbs	Z=	212 lbs	K _D =	2.400	K _D =	2.400	K _D =	2.400
	Duration Factor:	C _D =	1.6			Z=	135 lbs	Z=	221 lbs	Z=	125 lbs
	Allowable De:	sign Valu	e (ZC _D): Z	'= 199	lbs/anchor						

Fastener type: 1/4 ITW Tapcon

N.O.A. 16-1222.06

Substrate: Hollow block

Minimum embedment: 1.25 in

Actual edge distance: 2.50 in

Actual C To C spacing: 3.00 in

Allowable Design Value: Z''= 155 ||

Tabulated values

654 lbs

edge	spacing (in)					
distance	2.00	4.00				
2.00	130	161				
4.00	163	202				

Allowable Design Value: Z''= 155 lbs/anchor (per interpolation when needed)

Fastener type:	#10 S	ielf tapping screw	(Calculations per 2015 Aluminum Design Mar	iual, secti	on J.5.5)
Nominal screw diameter:	D:	0.190 in	Screw root area:	A_{r}	0.0151 in ²
Actual edge distance:	de:	1.085 in	Screw shear ultimate strength:	F_{su}	54.0 ksi

Per table J3.2 of 2010 Steel Construction Manual 14th Edition

(Eq J.5-14)

Manufacturer: Masonite

Report #: 514011A Date: 10/10/2017

Side member material: Vinyl PVC		Main memb	er material: 606	3-T5 al	uminum
Thickness: t_1 1,000 in			Thickness:	†2	0.052 in
Ultimate tensile strength: F _{tul} 14 ksi		Ultimate tens	ile strength:	F_{tu2}	22 ksi
Nominal strength per bearing (side member): Rn = 2Dt ₁ F _{tu1}	Rn1 =	5320 lbs	(Eq J.5-12)		
Nominal strength per bearing (main member): Rn = 2Dt ₂ F _{tu2}	Rn2 =	435 lbs	(Eq J.5-12)		
Nominal strength per tilting: Rn = $4.2(t_2^3D)^{1/2}F_{t_1/2}$	Rn =	478 lbs	(Eq J.5-13)		

 $Safety \ factor: \qquad \Omega = 3$ Allowable shear and bearing capacity: $P_{as} \qquad \qquad 145 \ lbs/anchor$

Nominal screw shear strength: Rn = $A_rF_{su}/1.25$

shear and bearing capacity:	$P_{\alpha s}$	145 lbs/anchor			
Fastener type:	#10 S	ielf tapping screw	(Calculations per AISI-S100-12, sections A2,	3.2 and E	4.3.1)
Nominal screw diameter:	D:	0.190 in	Screw shear ultimate strength:	F_{su}	54.0 ksi
Screw root area:	Α.,	0.0151 in ²	Per table J3 2 of 2010 Steel Construction Ma	ınual 14th	n Fdition

Side member material: Vinyl PVC Main member material: Metal framing Thickness: t_1 1.000 in Thickness: t_2 0 Ultimate tensile strength: F_{u1} 14 ksi Ultimate tensile strength: F_{u2}

Ultimate tensile strength: F_{u1} 14 ksi Ultimate tensile strength: F_{u2} Nominal strength per tilting: Rn = 4.2(t_2 ³D)^{1/2}F_{u2} Rn = 1001 lbs (Eq E4.3.1-1)

Nominal strength per bearing (side member): Rn = 2.7Dt₁F_{u1} Rn1 = 7182 lbs (Eq E4.3.1-2 and -4)

Nominal strength per bearing (main member): Rn = 2.7Dt₂F_{u2} Rn2 = 1280 lbs (Eq E4.3.1-3 and -5)

Nominal screw shear strength: Rn = $A_rF_{gu}/1.25$ Rn = 654 lbs

Safety factor: $\Omega = 3$ Allowable shear and bearing capacity: $P_{\alpha s}$ 218 lbs/anchor

Minimum anchor capacity: 145 lbs/anchor

later. Anothers with the last associate is used for calculations to swalling anothers

Note: Anchors with the least capacity is used for calculations to qualify anchors with higher capacity.

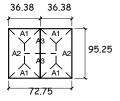
* No. 62514 *

No. 62514 *

No. 62514 *

STATE OF WILLIAM

STATE O

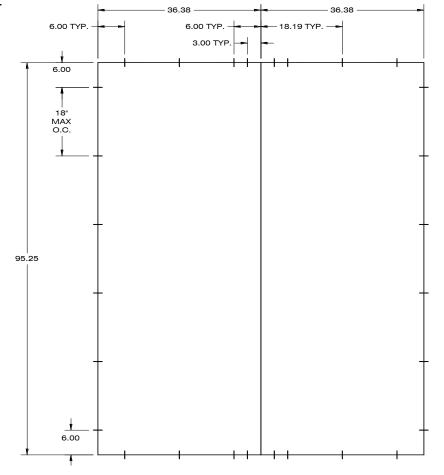

Luis R. Lomas P.E. FL No.: 62514

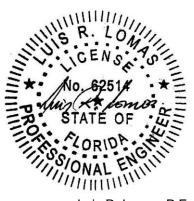
1432 Woodford Rd. Lewisville, NC 27023 434-688-0609


rllomas@Irlomaspe.com

Manufacturer: Masonite Report #: 514011A Date: 10/10/2017

Anchor calculations, minimum required anchors

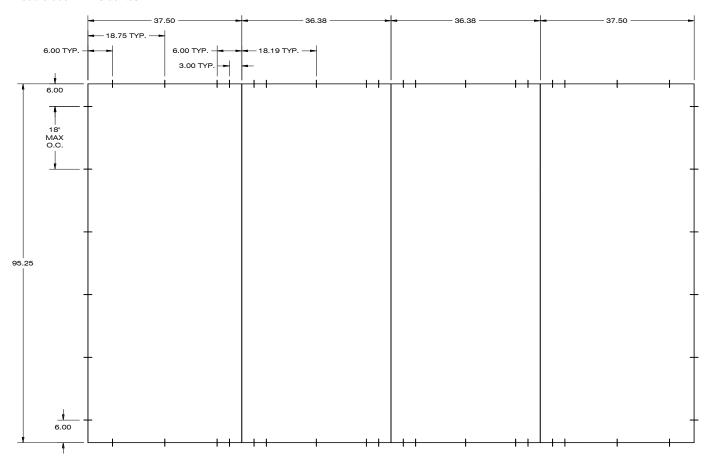

			psf						
ſ		Area	Load	Ind.	Max.		Anchor		
ı	Zone	(ft²)			O.C.	Cap.	Ott	Load	Result
L		(11)	(lbs)	(in)	(in)	(lbs)	Qty	(lbs)	
I	A_1	2.3	126	N/A	N/A	145	1	126	OK
I	A ₂	9.7	535	6.00	21.00	145	5	107	OK
I	A ₃	9.7	535	N/A	N/A	145	4	134	OK

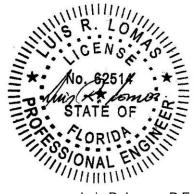


			Design p	ressure:	55.0	psf		
	Area	Load	Ind.	Max.		Anchor		
Zone	(ft ²)	(lbs)	(in)	O.C.	Cap.	Qty	Load	Result
	(11)	(103)	("")	(in)	(lbs)	٧.7	(lbs)	
A_1	2.4	134	N/A	N/A	145	1	134	OK
A ₂	10.0	548	6.00	21.00	145	5	110	OK
A ₃	9.8	542	N/A	N/A	145	4	135	OK
A ₄	2.3	126	N/A	N/A	145	1	126	OK
A ₅	9.7	535	N/A	N/A	145	4	134	OK

Anchor Locations:

Double door


Luis R. Lomas P.E. FL No.: 62514

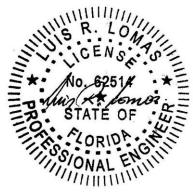

1432 Woodford Rd. Lewisville, NC 27023 434-688-0609

rllomas@Irlomaspe.com

Manufacturer: Masonite Report #: 514011A Date: 10/10/2017

Double door with sidelites

Luis R. Lomas P.E. FL No.: 62514


1432 Woodford Rd. Lewisville, NC 27023 434-688-0609

rllomas@Irlomaspe.com

Manufacturer: Masonite Report #: 514011A Date: 10/10/2017

Installation instructions:

- FOR ANCHORING THROUGH FRAME INTO WOOD FRAMING OR 2X BUCK USE #10 WOOD SCREWS WITH SUFFICIENT LENGTH TO ACHIEVE A 1 1/4" MINIMUM EMBEDMENT INTO SUBSTRATE WITH 1/2" MINIMUM EDGE DISTANCE. LOCATE ANCHORS AS SHOWN BELOW.
- FOR ANCHORING THROUGH FRAME INTO MASONRY/CONCRETE USE 1/4" TAPCONS WITH SUFFICIENT LENGTH TO ACHIEVE A 1 1/4" MINIMUM EMBEDMENT INTO SUBSTRATE WITH 2 1/2" MINIMUM EDGE DISTANCE. LOCATE ANCHORS AS SHOWN BELOW.
- 3. FOR ANCHORING THROUGH FRAME INTO METAL STRUCTURE USE #10 SMS OR SELF DRILLING SCREWS WITH SUFFICIENT LENGTH TO ACHIEVE 3 THREADS MINIMUM BEYOND STRUCTURE INTERIOR WALL WITH 1/2" MINIMUM EDGE DISTANCE. LOCATE ANCHORS AS SHOWN BELOW.
- ALL FASTENERS TO BE CORROSION RESISTANT.
- 5. INSTALLATION ANCHORS SHALL BE INSTALLED IN ACCORDANCE WITH ANCHOR MANUFACTURER'S INSTALLATION INSTRUCTIONS AND ANCHORS SHALL NOT BE USED IN SUBSTRATES WITH STRENGTHS LESS THAN THE MINIMUM STRENGTH SPECIFIED BELOW:
 - A. WOOD: MINIMUM SPECIFIC GRAVITY OF G=0.42
 - B. CONCRETE: MINIMUM COMPRESSIVE STRENGTH OF 2,000 PSI.
 - C. MASONRY: HOLLOW/FILLED BLOCK PER ASTM C90 WITH Fm=2,000PSI MINIMUM.
 - D. METAL STRUCTURE: STEEL 18GA (.048") FY=33KSI/FU=52KSI OR ALUMINUM 6063-T5 FU=30KSI .052" THICK MINIMUM
- 6. ANCHOR LOCATIONS SHOWN IN THIS DOCUMENT ARE THE MINIMUM REQUIRED FOR THE DESCRIBED PRODUCT EXPOSED AT THE DESIGN PRESSURE INDICATED HEREIN.
- WOOD FRAMING AND MASONRY OPENING TO BE DESIGNED AND ANCHORED TO PROPERLY TRANSFER ALL LOADS TO STRUCTURE. FRAMING AND MASONRY OPENING IS THE RESPONSIBILITY OF THE ARCHITECT OR ENGINEER OF RECORD.
- 8. 1X BUCK OVER MASONRY/CONCRETE IS OPTIONAL.
- WHERE SHIM OR BUCK THICKNESS IS LESS THAN 1-1/2" UNITS MUST BE ANCHORED THROUGH FRAME IN ACCORDANCE WITH MANUFACTURER'S PUBLISHED INSTALLATION INSTRUCTIONS. ANCHORS SHALL BE SECURELY FASTENED DIRECTLY INTO MASONRY, CONCRETE OR OTHER STRUCTURAL SUBSTRATE MATERIAL.
- 10. WHERE WOOD BUCK THICKNESS IS 1-1/2" OR GREATER, BUCK SHALL BE SECURELY FASTENED TO MASONRY, CONCRETE OR OTHER STRUCTURAL SUBSTRATE. UNITS MAY BE ANCHORED THROUGH FRAME TO SECURED WOOD BUCK IN ACCORDANCE WITH MANUFACTURER'S PUBLISHED INSTALLATION INSTRUCTIONS.
- 11. WHERE 1X BUCK IS NOT USED DISSIMILAR MATERIALS MUST BE SEPARATED WITH APPROVED COATING OR MEMBRANE. SELECTION OF COATING OR MEMBRANE IS THE RESPONSIBILITY OF THE ARCHITECT OR ENGINEER OF RECORD.
- 12. BUCKS SHALL EXTEND BEYOND WINDOW INTERIOR FACE SO THAT FULL FRAME SUPPORT IS PROVIDED.

Luis R. Lomas P.E. FL No.: 62514