L. Roberto Lomas P.E.

208 7th Avenue Indialantic, 32903 434-688-0609 (phone fax) rllomas@lrlomaspe.com Client: Masonite Report: 514014C Date: 12/20/2023

Test Report: N/A

Product: Single door 3'x6'8" (Composite frame)

Scope:

This analysis provides calculations, quantities, and spacing requirements for installing product to substrate, and it applies only to the product described herein. These calculations comply with requirements of the Florida Building Code 8th edition (2023).

Anchor capacity in shear condition:

Solid members w/ & w/out gap:

a. With threads present in shear plane

Fastener type: #:	10 wood	screw	(NDS 2018, TR12)					
Nominal diameter:	D:	0.190 in	Gap: g:	0.0000 in				
Root diameter:	Dr:	0.152 in	Moment arm:	0.0000 in				
Minimum required penetration:	p:	1.140 in	Screw bending yield strength: F_{yb} =	80,000 psi				
Side member: PV	'C		Main member: Spruce-Pir	Main member: Spruce-Pine-Fir (G=0.42)				
Side member thickness:	† _s =	1.000 in	Main member thickness: $t_m =$	1.500 in				
Side member dowel bearing strength:	F _{es} =	10,000 psi	Main member dowel bearing strength: F_{em} =	3,350 psi				
Side member dowel bearing length:	l _s =	1.000 in	Main member dowel bearing length: I_m =	1.140 in				

Mode	e I _m	Mode	I_s	٨	Node	II	Mode	III _m	Mode	e III $_s$	Μ	ode IV
qm =	636.5 lbs/in	qs =	1900 lbs/i	in	A:	0.0005	A:	0.00066	A :	0.00092	A:	0.001049
P =	725.61 lbs	P =	1900 lbs		B:	1.07	B:	0.57	В:	0.5	В:	0.000
K _D =	2.400	K _D =	2.400		C: -	-681.799	<i>C</i> :	-253.623	C :	-521.824	C :	-93.6
$Z_m =$	302 lbs	$Z_s =$	792 lbs	P	=	510 lbs	Ms =	46.8 in-lbs	Mm =	46.8 in-lbs		
				K _D	, =	2.400	P =	324 lbs	P =	529 lbs	P =	299 lbs
	Min. Design value:	Z=	125 lbs	Z	Z =	212 lbs	K _D =	2.400	K _D =	2.400	$K_D =$	2.400
	Duration Factor:	$C_{D} =$	1.6				Z =	135 lbs	Z=	221 lbs	Z=	125 lbs
	Allowable De	sign Value	≥ (ZC _D):	Z'= 19	99 lb	s/anchor						

Tabulated values

edge

distance

2.00

4.00

spacing (in)

4.00

161

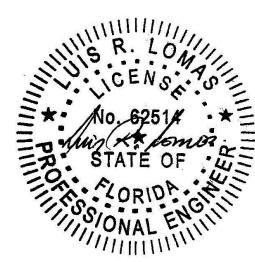
202

2.00

130

163

Fastener type: 1/4 ITW Tapcon


N.O.A. 21-0201.06

Substrate: Hollow block
Minimum embedment: 1.25 in
Actual edge distance: 2.50 in

Actual C To C spacing: 3.00 in

Allowable Design Value: Z''= 155 lbs/anchor (per interpolation when needed)

rastener type: #10	Seit tapping screw	(Calculations	s per 2020 Alum	iinum Design Mani	ιαι)						
Nominal screw diameter: D:	0.190 in		Scre	ew root area:	A_{r}	0.0151 in^2					
Actual edge distance: de:	1.085 in	Sci	rew shear ultimo	ite strength:	F_{su}	54.0 ksi					
		Per table J3	3.2 of 2010 Stee	el Construction Mo	ınual 14t	h Edition					
Side member material:	Vinyl PVC		Main memb	er material: 606	3-T5 alı	5 aluminum † ₂ 0.052 in					
Thickness: t_1	1.000 in			Thickness:	†2	0.052 in					
Ultimate tensile strength: F_{tu1}	14 ksi		Ultimate tens	ile strength:	F_{tu2}	22 ksi					
Nominal strength per bearing (side member):	$Rn = 2Dt_1F_{tu1}$	Rn1 =	5320 lbs	(Eq J.5-12)							
Nominal strength per bearing (main member):	$Rn = 2Dt_2F_{tu2}$	Rn2 =	435 lbs	(Eq J.5-12)							
Nominal strength per tilting:	Rn = $4.2(t_2^3D)^{1/2}F_{tu2}$	Rn =	478 lbs	(Eq J.5-13)							
Nominal screw shear strength:	Rn = A _r F _{su} /1.25	Rn =	654 lbs	(Eq J.5-14)							
Safety factor:	Ω = 3										
Illowable shear and bearing capacity: Pas	145 lbs/anchor										

Luis R. Lomas P.E. FL No.: 62514

12/20/2023

L. Roberto Lomas P.E.

208 7th Avenue Indialantic, 32903 434-688-0609 (phone fax) rllomas@lrlomaspe.com

Client: Masonite Report: 514014C Date: 12/20/2023

(Calculations per AISI S100-16 and AISC 2017) Screw shear ultimate strength: 54.0 ksi

Per table J3.2 of 2010 Steel Construction Manual 14th Edition

Main member material: Metal framing

Thickness: 0.048 in †2 Ultimate tensile strength: F_{u2}

Nominal strength per tilting: Rn = $4.2(t_2^3D)^{1/2}F_{u2}$ 1001 lbs (Eq E4.3.1-1) Rn = (Eq E4.3.1-2 and -4) Nominal strength per bearing (side member): $Rn = 2.7Dt_1F_{u1}$ Rn1 = 7182 lbs Nominal strength per bearing (main member): $Rn = 2.7Dt_2F_{u2}$ 1280 lbs (Eq E4.3.1-3 and -5) Rn2 =

Nominal screw shear strength: Rn = $A_rF_{su}/1.25$ 654 lbs Rn = $\Omega = 3$ Safety factor:

#10 Self tapping screw

0.190 in

0.0151 in²

1.000 in

218 lbs/anchor Allowable shear and bearing capacity:

Minimum anchor capacity: 145 lbs/anchor

Fastener type:

Screw root area:

Thickness:

Nominal screw diameter:

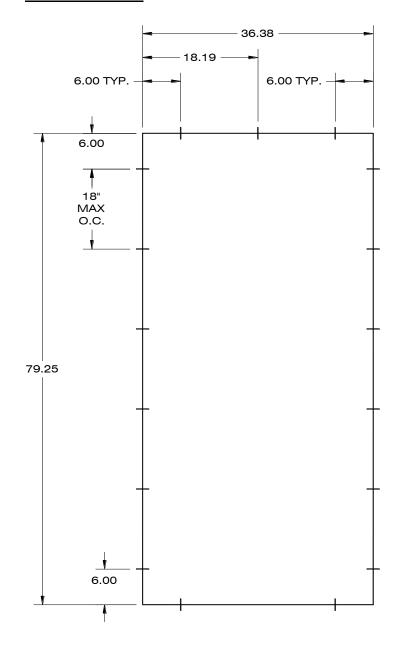
Ultimate tensile strength:

Note: Anchors with the least capacity is used for calculations to qualify anchors with higher capacity.

Side member material: Vinyl PVC

†1

 F_{u1}


Anchor calculations, minimum required anchors

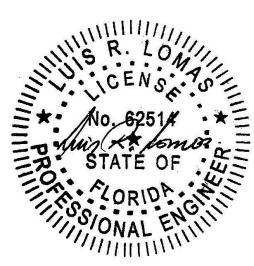
36.38

79.25

Design pressure: 85.0 psf									
	Area	Load	Ind.	Max.		Anchor			
Zone	(ft ²)	(lbs)	(in)	O.C.	Cap.	Qty	Load	Result	
(11)	(11)	(IDS)	(III)	(in)	(lbs)	יש	(lbs)		
A_1	2.3	195	N/A	N/A	145	2	98	OK	
A_2	7.7	656	6.00	18.00	145	5	131	OK	

Anchor Locations:

Luis R. Lomas P.E. FL No.: 62514


12/20/2023

L. Roberto Lomas P.E.

208 7th Avenue Indialantic, 32903 434-688-0609 (phone fax) rllomas@lrlomaspe.com Client: Masonite Report: 514014C Date: 12/20/2023

Installation instructions:

- 1. FOR ANCHORING THROUGH FRAME INTO WOOD FRAMING OR 2X BUCK USE #10 WOOD SCREWS WITH SUFFICIENT LENGTH TO ACHIEVE A 1 1/4" MINIMUM EMBEDMENT INTO SUBSTRATE WITH 1/2" MINIMUM EDGE DISTANCE. LOCATE ANCHORS AS SHOWN BELOW.
- 2. FOR ANCHORING THROUGH FRAME INTO MASONRY/CONCRETE USE 1/4" TAPCONS WITH SUFFICIENT LENGTH TO ACHIEVE A 1 1/4" MINIMUM EMBEDMENT INTO SUBSTRATE WITH 2 1/2" MINIMUM EDGE DISTANCE. LOCATE ANCHORS AS SHOWN BELOW.
- 3. FOR ANCHORING THROUGH FRAME INTO METAL STRUCTURE USE #10 SMS OR SELF DRILLING SCREWS WITH SUFFICIENT LENGTH TO ACHIEVE 3 THREADS MINIMUM BEYOND STRUCTURE INTERIOR WALL WITH 1/2" MINIMUM EDGE DISTANCE. LOCATE ANCHORS AS SHOWN BELOW.
- 4. ALL FASTENERS TO BE CORROSION RESISTANT.
- 5. INSTALLATION ANCHORS SHALL BE INSTALLED IN ACCORDANCE WITH ANCHOR MANUFACTURER'S INSTALLATION INSTRUCTIONS AND ANCHORS SHALL NOT BE USED IN SUBSTRATES WITH STRENGTHS LESS THAN THE MINIMUM STRENGTH SPECIFIED BELOW:
 - A. WOOD: MINIMUM SPECIFIC GRAVITY OF G=0.42
 - B. CONCRETE: MINIMUM COMPRESSIVE STRENGTH OF 2,000 PSI.
 - C. MASONRY: HOLLOW/FILLED BLOCK PER ASTM C90 WITH Fm=2,000PSI MINIMUM.
 - D. METAL STRUCTURE: STEEL 18GA (.048") FY=33KSI/FU=52KSI OR ALUMINUM 6063-T5 FU=30KSI .052" THICK MINIMUM
- 6. ANCHOR LOCATIONS SHOWN IN THIS DOCUMENT ARE THE MINIMUM REQUIRED FOR THE DESCRIBED PRODUCT EXPOSED AT THE DESIGN PRESSURE INDICATED HEREIN.
- 7. WOOD FRAMING AND MASONRY OPENING TO BE DESIGNED AND ANCHORED TO PROPERLY TRANSFER ALL LOADS TO STRUCTURE. FRAMING AND MASONRY OPENING IS THE RESPONSIBILITY OF THE ARCHITECT OR ENGINEER OF RECORD.
- 8. WHERE SHIM OR BUCK THICKNESS IS LESS THAN 1-1/2" UNITS MUST BE ANCHORED THROUGH FRAME IN ACCORDANCE WITH MANUFACTURER'S PUBLISHED INSTALLATION INSTRUCTIONS. ANCHORS SHALL BE SECURELY FASTENED DIRECTLY INTO MASONRY, CONCRETE OR OTHER STRUCTURAL SUBSTRATE MATERIAL.
- 9. WHERE WOOD BUCK THICKNESS IS 1-1/2" OR GREATER, BUCK SHALL BE SECURELY FASTENED TO MASONRY, CONCRETE OR OTHER STRUCTURAL SUBSTRATE. UNITS MAY BE ANCHORED THROUGH FRAME TO SECURED WOOD BUCK IN ACCORDANCE WITH MANUFACTURER'S PUBLISHED INSTALLATION INSTRUCTIONS.
- 10. WHERE 1X BUCK IS NOT USED DISSIMILAR MATERIALS MUST BE SEPARATED WITH APPROVED COATING OR MEMBRANE. SELECTION OF COATING OR MEMBRANE IS THE RESPONSIBILITY OF THE ARCHITECT OR ENGINEER OF RECORD.
- 11. BUCKS SHALL EXTEND BEYOND WINDOW INTERIOR FACE SO THAT FULL FRAME SUPPORT IS PROVIDED.

Luis R. Lomas P.E. FL No.: 62514

12/20/2023