

American Test Lab, Inc

 1122 Calvert Road Brevard, NC 28712 828-884-3700 atli@comporium.netATLNC 0409.01-18

Dade Certification \# 18-0213.12 FBC Organizational \# TST 1555 IAS Certification \# TL-423

Report Date: 06/12/18
Test Date: 04/05/18 - 04/11/18

Test Carriage House Door Company Requested 1571 E. Main St.
By:
Old Fort, N.C. 28762
Phone: 828-668-1600 Fax: 828-668-1805

Test

Standards: FBC TAS 201-94, 202-94, 203-94, HVHZ
ASTM E, 330-02, ANSI / DASMA 108-2012
ANSI/DASMA 115-2012
Note: All tests were conducted without deviation. Being wood the samples did not require Salt Spray Test.

Test Conditions: 75-80 degrees F

Design Pressures: +48 psf, -55 psf

Description of product tested: Carriage House Door 10' x 8' Model 101 Wood Garage door as shown in drawing \# Carriage-10-8-48-55. Drawing is an integral part of the test report and must accompany the report.

Description of Unit:

Component	Number	Description	Location
Sections	4	120 " x 27 " $\times 21^{\prime \prime} \times 21^{\prime \prime} \times 27^{\prime \prime}$ Wood sections consisting of $1-3 / 8$ " thick wood frame sheathed on the interior by $1 / 4$ exterior plywood and exterior by $1 / 4$ " exterior ply wood attached with 18 ga $1 / 4$ " x $3 / 4$ " Crown Staples. The space between the plywood sheathing was filled with foam insulation. Exterior faced with $1 / 2$ " $\times 6$ " Tongue	

		and grooved boards glued (expanding urethane glue) and blind nailed 18 ga $1 / 4$ " $\times 3 / 4$ " Crown Staples to $1 / 4$ " plywood. Trim was $5 / 8^{\prime \prime} \times 6$ " boards. Face nailed (2" 18 ga pin nail)	
Windows	2	DO 47" x 16-5/8" 9/16" thick laminated glass with $1 / 4$ " annealed glass, 0.090 " vinyl interlayer, $1 / 4^{\prime}$ annealed glass, Glass bite - 7/8" Sealed all 4 sides with Dow 995 sealant.	Top section or $3^{\text {rd }}$ section
End stiles	2 per section	5 " wide $\times 1-3 / 8$ " thick x section height wood style	End of each section
Rails	$\begin{gathered} 2 \mathrm{per} \\ \text { section } \end{gathered}$	Bottom rail on bottom section and top rail on top section 5 " wide $\times 1-3 / 8 "$ thick x 216 " long. All other rails 2-1/4" wide x 1-3/8" thick x 120" long	Top and bottom of each section
Intermediate Stiles	4 per section	2-1/4" wide $\times 1-3 / 8 "$ thick x section height wood style	2' OC from section end
Steel Roller Hinges	4 per section joint	Double 11 ga galvanized steel hinges with left side of door outer hinge attached with (4) 1/4" $\times 2-1 / 4$ " carriage bolts and inner hinge attached with (4) 1/4" x 1-3/8" lag screws. Right side of door both hinges attached with (4) 1/4" x 1-3/8" lag screws.	Each end stile
Intermediate Hinges	4 per section joint	11 ga steel hinge (2) attached with (4) $1 / 4$ " $\times 2-1 / 4$ " carriage bolts and nuts. (2) attached with (4) 1/4" $\times 1-1 / 4$ " lag screws.	Each intermediate stile
1/2 hinges	4 or 8	11 ga steel $1 / 2$ hinge attached with (4) 1-1/4" lags	Section joint on window section as shown in drawing.
3" Struts	2 each section	3" 20 ga 50 KSI hat strut attached with (2) $1 / 4$ " x 1-3/8" lag screw per stile	Each section 1/2" from hinges as shown in drawing
2" 10 ball nylon rollers	5 per side	1-13/16" diameter steel rollers with $7 / 16$ " x 9" stem with a $7 / 16$ " push nut. No push nut on bottom roller.	One side of door in bottom and top brackets and double end hinges
Bottom Brackets	2	11 ga $\times 3^{\prime \prime} \times 8$ " One side attached with (3) $1 / 4$ " $\times 2-1 / 4$ " carriage bolts and nuts. Other side attached with (3) 11/4" lags	Bottom left and right corners of bottom section
Top Fixtures	4	12 ga (.101") fixtures, attached with (6) $1 / 4$ " $\times 1-3 / 8$ " lag screws each fixture.	2 each top corner of door
2" Vertical Track with track brackets	1	2" x .083" thick track attached to (7) 21/2" x 12ga (.101") track brackets with (1) $1 / 4 " \times 20 \times 5 / 8 "$ track bolt and nut per bracket. Bracket attached to jamb	Side of door

		with (1) 5/16" x 1-5/8" lag screw per bracket. Brackets located 2" from bottom of door then 6" above and below each section joint, Flag Bracket $87-1 / 2 ", 96 ", 101-1 / 2 "$ from floor.	
2" Horizontal track	1	Attached to 2" vertical track with (2) $1 / 4 " \times 3 / 4 "$ track bolts and nuts and to flag bracket with (1) 3/8" x 3/4" carriage bolt.	Attached to top of 2" vertical track.
Counter balance System	1	Each side of the door balanced with a $1 / 8 "$ metal cable. Each cable was attached to the bottom bracket and a drum on each side. Drums attached to a shaft and springs	Above the door

STATIC AIR PRESSURE

TAS 202-94, ASTM E 330-02

Specimen A
 Design Loads $\quad+48 \mathrm{psf},-55 \mathrm{psf}$

Range of tests
Positive loads
1/2 Test
Design
Test

Time Seconds	Load psf	Max.	Perm.	Recovery
30	36	$9 / 16 "$	$0 "$	100%
30	48	$13 / 16^{\prime \prime}$	$1 / 16 "$	92%
30	72	$1-1 / 4 "$	$3 / 16 "$	85%

Range of tests Negative loads
1/2 Test
Design
Test

Time Seconds	Load psf	Max.	Perm.	Recovery
30	41.8	$5 / 8^{\prime \prime}$	$0 "$	100%
30	55	$7 / 8^{\prime \prime}$	$1 / 16^{\prime \prime}$	93%
30	82.5	$1-7 / 16 "$	$1 / 8^{\prime \prime}$	92%

Forced Entry Test
Forced entry test was conducted in accordance with TAS 202-94 and ASTM F588-07 with no deviation. Specimen Passed.

Impact
Large Missile
TAS 201-94, DASMA 115-12
Type and weight of missile: Missile level D - \#2 Southern Pine 2×4, Length 96 " and 9 lbs . All corner shots were impacted away from structural supports.

Note:
X measurement from left edge of specimen.
Y measurement from bottom edge of specimen

* Note: Window shots measurements from window frame.

Specimen A

34	Impact No.	Speed Ft. / Sec.	X Meas.	Y Meas.	Degree of Orientation
1	1	49.7	50-1/4"	49"	355
2	2	50	51-1/4"	37-1/2"	350
5	3	50	30-3/4"	80-1/2"	355
	4	49.7	44-3/4"	81-3/4"	0
	5	49.5	9-1/2"	16 "	345

Note: No penetration or ruptures occurred.

Impact No.	Speed Ft. / Sec.	X Meas.	Y Meas.	Degree of Orientation
1	49.5	59 "	$47-3 / 4$ "	345
2	49.5	$87-3 / 4$ "	$36-1 / 2^{\prime \prime}$	0
3	50	$30-1 / 4 "$	$59-1 / 4$ "	355
4	49.9	$44-1 / 4 "$	$60-1 / 4$ "	0
5	49.6	$9-1 / 2^{\prime \prime}$	$18 "$	5

Note: No penetration or ruptures occurred.

Specimen C

Impact No.	Speed Ft. / Sec.	X Meas.	Y Meas.	Degree of Orientation
1	49.8	$59-3 / 4^{\prime \prime}$	$49-1 / 4^{\prime \prime}$	0
2	50	$89-1 / 4^{\prime \prime}$	$35-3 / 4^{\prime \prime}$	350
3	50	$30-1 / 4^{\prime \prime}$	$81-3 / 4^{\prime \prime}$	350
4	49.8	$15-1 / 4^{\prime \prime}$	$81-1 / 2^{\prime \prime}$	0
5	49.5	$56-3 / 4^{\prime \prime}$	$81-1 / 2^{\prime \prime}$	355
6	50	$115^{\prime \prime}$	$81-3 / 4^{\prime \prime}$	0
7	50	$8-1 / 2^{\prime \prime}$	$15-1 / 2^{\prime \prime}$	358

Note: No penetration or ruptures occurred.

Cyclical Test

FBC TAS 203-94, DASMA 115-12
Specimens: A, B, C
Design Loads: $+48 \mathrm{psf},-55 \mathrm{psf}$

Range of test Positive loads	Actual Load psf	\# of cycles	Cycles per minutes	A		B		C	
			max def	perm set	max def	perm set	max def	perm set	
$.2-.5$	$10-24$	3500	43	$3 / 8^{\prime \prime}$		$9 / 16^{\prime \prime}$		$5 / 16^{\prime \prime}$	
$0-.6$	$0-29$	300	43	$7 / 6^{\prime \prime}$		$11 / 16^{\prime \prime}$		$5 / 8^{\prime \prime}$	
$.5-.8$	$24-38$	600	40	$9 / 16^{\prime \prime}$		$15 / 16^{\prime \prime}$		$9 / 16^{\prime \prime}$	
$.3-1.0$	$14-48$	100	33	$3 / 4^{\prime \prime}$	$1 / 8^{\prime \prime}$	$1-3 / 16^{\prime \prime}$	$1 / 8^{\prime \prime}$	$3 / 4^{\prime \prime}$	$1 / 16^{\prime \prime}$

Range of test Negative loads	Actual Load psf	\# of cycles	Cycles per minutes	A		B		C	
			Max def	perm set	max def	perm set	max def	perm set	
$.3-1.0$	$17-55$	50	50	$13 / 16^{\prime \prime}$		$1-1 / 8^{\prime \prime}$		$15 / 16^{\prime \prime}$	
$.5-.8$	$28-44$	1050	48	$11 / 16^{\prime \prime}$		$15 / 16^{\prime \prime}$		$13 / 16^{\prime \prime}$	
$0-.6$	$0-33$	50	50	$7 / 6^{\prime \prime}$		$3 / 4^{\prime \prime}$		$11 / 1^{\prime \prime}$	
$.2-.5$	$11-28$	3350	51	$5 / 16^{\prime \prime}$	$1 / 16^{\prime \prime}$	$5 / 8^{\prime \prime}$	$1 / 8^{\prime \prime}$	$5 / 8^{\prime \prime}$	$1 / 16^{\prime \prime}$

Cycles Completed 9000
Description of specimens after test:
Specimens showed no resultant failure or distress after cyclical test. All doors were operable before and after all tests.

Note: 2 mil polyethylene film was used for the Static Air Pressure Test, it is the opinion of the undersigned that it had no influence on the results of the test.

Technicians: Keith Owen
Samuel Poplin
Keith Owen Jr.

Observers-

Keith Owen, Ashley Poplin / ATL
Keith Owen Jr., Samuel Poplin/ ATL
David W. Johnson, P.E.
Shawn Guthrie / Carriage House Doors

Keith Owen, Lab Director
American Test Lab, Inc.

All Tests Witnessed and Certified by: David Johnson P. E. 1122 Calvert Rd. Brevard, NC 28712
Florida P.E. \# 61915

Certificate of Independence: The witnessing engineer thashoiequtspunership interest in American Test Lab of North Carolina, Carriage House D $\delta \mathbf{d} \| \$ \mid \Phi n$ their parts vendors. Witnessing engineer is in complete compliance of Florida Statue 9B-72, Section 72.110

Disclaimer:
ATL and its staff have no equity/ownership interest in any product tested or installed. This test report was prepared by American Test Lab, North (ATL) for the exclusive use of the above named client; it does not constitute certification of this product. The results are for that particular specimen tested and does not imply the quality of similar or identical products manufactured or installed from specifications identical to the tested product. ATL is a testing lab and assumes that all information provided by the client is accurate and does not guarantee or warranty any product tested or installed. This report may not be reproduced except in full, and only under expressed permission from American Test Lab or Carriage House Doors. Reproduced reports in hard copy must be labeled "Copy".

Note: The design of the supporting structural
Note: The design of the supporting structura
elements shall be the responsibility of the professional of record for the structure and in accordance with current building codes
for the loads listed on this document Models: Design 101 thru 108 Tested in accordance with ANSI/DASMA 108 and ANSI/DASMA 115 Design Pressure: $+48 /-55$ PSF
Test Pressure: $+72 /-825$ PSF Test Pressure: +72/-82.5 PSF

 10x8 Carriage House Door $+48 /-55$ PSF DRAWING NUMBER

Carriage-10-8-48-55 SIZE

B
B \quad scale

N/A

