intoctok	PROJECT: QUAKER M600 Casement Windows	BY: TAD	DATE: 08/31/23
UICEICEK	PROJECT NO.: Q4430.01-122-34	CKD: ARK	SHEET: 1 OF 41

Window Installation Analysis

QUAKER WINDOWS & DOORS M600 Casement Windows

Report Q4430.01-122-34

Rendered to:

Quaker Windows & Doors P.O. Box 128 504 Highway 63 South Freeburg, MO 65035

Prepared by:

Tanya A. Dolby, P.E. Adam Kunkel

Architectural Testing, Inc. 130 Derry Court York, Pennsylvania 17406 (717) 764-7700

August 31, 2023

Tanya A. Dolby, P.E. Manager, Engineering Services Adam Kunkel Project Engineer

Scope

Architectural Testing, Inc., an Intertek company, was contracted by Quaker Window & Doors to perform installation analysis for M600 Casement Windows on test report Test Reports G3075.01-801-47-R0, G3081.01-801-47-R1, H0885.01-801-47-R1, and H0898.01-801-47-R0.

The analyses performed satisfy the methods and requirements of the following:

Florida Building Code, Building, 8th Edition (2023). International Code Council, 2023.

ADM-2020 Aluminum Design Manual. The Aluminum Association, Inc., 2020.

AAMA TIR-A9-14 *Design Guide for Metal Cladding Fasteners, Includes 2020 Addendum.* American Architectural Manufacturers Association, 2014.

AISI S100-16(2020) North American Specification for the Design of Cold-Formed Steel Structural Members, 2016 Edition (Reaffirmed 2020). American Iron and Steel Institute, 2020.

ICC-ES Report ESR-1976 ITW Buildex TEKS Self-Drilling Fasteners. ICC Evaluation Service. 01/2023.

GANA Glazing Manual, 50th Anniversary Edition

ANSI/AWC NDS-2018 National Design Specification (NDS) for Wood Construction with 2018 Supplement. American Wood Council, 2018.

NOA No. 21-0628.20 Hilti Kwik-Con+ Concrete and Masonry Screw Anchor

The calculations presented herein are for the integrity of the window installations based on wind load only. The weather tightness of the installation is not addressed by this report. The air/water/structural performance of the individual products is not proven by this report.

Certification of Independence

In accordance with Rule 61G20-3 Florida Administrative Code, Architectural Testing, Inc. hereby certifies the following:

- Architectural Testing does not have, nor does it intend to acquire or will it acquire, a financial interest in any company manufacturing or distributing products tested or labeled by the agency.
- Architectural Testing is not owned, operated or controlled by any company manufacturing or distributing products it tests or labels.
- Tanya A. Dolby, P.E. and Adam R. Kunkel do not have nor will acquire, a financial interest in any company manufacturing or distributing products for which the reports are being issued.
- Tanya A. Dolby, P.E. and Adam R. Kunkel do not have, nor will acquire, a financial interest in any other entity involved in the approval process of the product.

Analyses

Summary of Test Results

The following table summarizes the M600 Casement Windows and the corresponding performance level established by testing.

Table 1 Summary of Test Results					
Series/Model	Test Report Number	est Report Number Product Certification		Performance	
M600 Casement Window	G3075.01-801-47 (Revision 0, 11/21/16)	NI013458-R1	48" x 84"	+/- 70 psf	
M600 Twin Casement Window	G3081.01-801-47 (Revision 3, 04/06/18)	NI013458.01-R1	72" x 96"	+/- 70 psf	
M600 Casement Window	H0885.01-801-47 (Revision 1, 03/09/18)	NI013806-R1	36" x 72"	+/- 70 psf	
M600 Casement Window	H0898.01-801-47 (Revision 0, 05/17/17)	NI013806.01-R1	36" x 96"	+/- 70 psf	

Testing documented in Table 1 was conducted by the Architectural Testing laboratory in Plano, Texas (Florida Department of Business & Professional Regulation Test Lab No. TST1910, IAS Accredited Laboratory TL-331).

As-Tested Installation Analysis

The specimen was secured to a 2x Spruce-Pine-Fir wood buck with #6 x 1-5/8" course thread wood/deck screws. The as-tested installation method is evaluated on page 5 and the established design capacity summarized in Table 2. Alternate anchorage is shown in Table 3 and Table 4 with on center spacings in Table 5 and Table 6 on pages 8 and 9.

Installation	Connection	Capacity	Comments
Nailing Fin to Wood	#6 PH Wood Screw	72 lb	 Limited by pull-over 1 ½" minimum penetration G = 0.55 Minimum SPF

Table 2 As-Tested Anchorage Design Capacities

intoctok	PROJECT: QUAKER M600 Casement Windows	BY: TAD	DATE: 08/31/23
UICERCER	PROJECT NO.: Q4430.01-122-34	CKD: ARK	SHEET: 5 OF 41

Anchorage Requirements

#6 x 1-5/8" course thread wood/deck screws actual test anchor capacity based on tested spacing:

Window Ma	ark	Width, w	Height, h			R	Anchor Spacing
		(inch)	(inch)	w/h	gamma	(lb/inch)	(in)
Desig	n Pressure	70.0	psf				
Anch	or Capacity	135.0	lb (#6 PH to	Wood)			
G3075.01-801-47	Jamb	48.00	84.00	1.75	0.497	11.61	12
Desig	n Pressure	70.0	psf				
Anch	or Capacity	110.0	lb (#6 PH to	Wood)			
G3081.01-801-47	Jamb	36.00	96.00	2.67	0.505	8.84	12
Design Pressure		70.0	psf				
Anch	or Capacity	110.0	lb (#6 PH to	Wood)			
H0885.01-801-47	Jamb	36.00	72.00	2.00	0.503	8.80	12
Design Pressure 70.0 psf							
Anch	150.0	lb (#6 PH to	Wood)				
H0898.01-801-47	Jamb	36.00	96.00	2.67	0.505	8.84	17

Glazing analysis for tested units are shown on pages 30 to 33. The glass Load Resistance were greater than the tested design pressures.

Calculated alternate anchors on the following pages are shown for 70 psf design pressure, #10, #12, and 3/16" fasteners into wood, metal stud, and concrete substrates.

The alternate anchorage conditions have design capacities which are comparable to or exceeds the least capacity of the as tested anchorage. All anchorage is installed 3" from corners and at the spacing calculated shown on pages 8 and 9 of 41 for 70 psf Design Load. Maximum shim space between the window frame and surrounding substrate is 1/4" for all conditions. Anchors must be fully shimmed and supported.

Note: G3081.01-801-47 Dual Casement anchor spacing is calculated for each individual 36" wide window. The intermediate mullion reactions are transferred to the mid-point of the head and sill. Reference Dual Casement Mullion end reaction notes on pages 8 and 9 and mullion analysis on pages 28 and 29.

Alternate Anchorage Capacities

Table 3 Alternate Anchorage Capacity – Nail Fin

Installation	Connection	Capacity	Comments
Nailing Fin to Wood	#10 PH Wood Screw	114 lb	 Limited by pull-over 1 ½" minimum penetration G = 0.55 Minimum SYP
Nailing Fin to Wood	#10 Round Washer Head Wood Screw	178 lb	 Limited by pull-over 1 ½" minimum penetration G = 0.55 Minimum SYP
Nailing Fin to Wood	#12 PH Wood Screw	130 lb	 Limited by pull-over Full penetration +3 threads G = 0.55 Minimum SYP
Nailing Fin to Steel	#10 HWH TEKS Screw	128 lb	 Limited by pull-out Full penetration +3 threads Min 18 gauge 33 KSI steel
Nailing Fin to Steel	#12 HWH TEKS Screw	136 lb	 Limited by pull-over Full penetration +3 threads Min 18 gauge 33 KSI steel
Nailing Fin to Concrete	3/16" Hilti Kwik Con+	123 lb	 Limited by tension 1" minimum embedment 3,000 psi concrete
Nailing Fin to CMU	3/16" Hilti Kwik Con+	128 lb	 Limited by tension 1" minimum embedment C90 concrete block

intoctok	PROJECT: QUAKER M600 Casement Windows	BY:	TAD	DATE: 08/31/23
UICEICEK	PROJECT NO.: Q4430.01-122-34	CKD:	ARK	SHEET: 7 OF 41

Table 4 Alternate Anchorage Capacity – Strap Anchor

Installation	Connection	Capacity	Comments
Nailing Fin to Wood	#10 PH Wood Screw	154 lb	 Limited by shear 0.08" thick 6063-T6 Aluminum G = 0.55 Minimum SYP
Nailing Fin to Wood	#10 Round Washer Head Wood Screw	154 lb	 Limited by shear 0.08" thick 6063-T6 Aluminum G = 0.55 Minimum SYP
Nailing Fin to Wood	#12 PH Wood Screw	193 lb	 Limited by shear Full penetration +3 threads G = 0.55 Minimum SYP
Nailing Fin to Steel	#10 HWH TEKS Screw	287 lb	 Limited by tilting Full penetration +3 threads Min 18 gauge 33 KSI steel
Nailing Fin to Steel	#12 HWH TEKS Screw	306 lb	 Limited by tilting Full penetration +3 threads Min 18 gauge 33 KSI steel
Nailing Fin to Concrete	3/16" Hilti Kwik Con+	215 lb	 Limited by shear 1" minimum embedment 3,000 psi concrete
Nailing Fin to CMU	3/16" Hilti Kwik Con+	150 lb	 Limited by shear 1" minimum embedment C90 concrete block

PROJECT NO.: Q4430.01-122-34

Required Anchor Spacing at 70 psf Design Pressure

Anchorage Requirements

Although the capacities of the alternate anchorages exceed the capacity of the as-tested anchorage, it must be determined the anchorages are not overloaded for the approved window size and design pressures. Calculations presented in page 34 show required spacing for the evaluated anchorage conditions. Results are summarized in the following table.

Table 5 Nail Fin Anchorage Requirements

Substrate	Anchor	Punched 36" x 72" Anchor Spacing	Punched 36" x 96" Anchor Spacing	Punched 48" x 84" Anchor Spacing	Dual 72" x 96" Anchor Spacing
		70 psf	70 psf	70 psf	70 psf
	#10-13 PH Wood Screw	13	13	10	13
Nailing Fin to Wood	#10-13 Round Washer Head Wood Screw	20	20	15	20
	#12-11 PH Wood Screw	15	15	11	15
Nailing Fin	#10 TEKS Screw	14	14	11	14
to Steel	#12 TEKS Screw	15	15	12	15
Nailing Fin to Concrete	3/16" Hilti Kwik Con+	14	14	11	14
Nailing Fin to CMU	3/16" Hilti Kwik Con+	14	14	11	14

If the spacing reported in Table 5 exceeds the as-tested spacing reported in Table 2, the as tested spacing shall govern. Spacing is limited to 12" on center maximum.

Dual Casement Mullion end reaction = 683 lbs

 In addition to the on center spaced anchors, locate a group of four (4) additional anchors at each intermediate mullion location, head and sill. Four (4) total anchors spaced minimum 2" apart. Available capacity in the two adjacent anchors will withstand 114 lb minimum each.

Table 6 Strap Anchorage Requirements

Substrate	Anchor	Punched 36" x 72" Anchor Spacing 70 psf	Punched 36" x 96" Anchor Spacing 70 psf	Punched 48" x 84" Anchor Spacing 70 psf	Dual 72" x 96" Anchor Spacing 70 psf
Cture re	#10-13 PH Wood Screw	17	17	13	17
Anchor	#10-13 Round Washer Head Wood Screw	17	17	13	17
	#12-11 PH Wood Screw	22	22	17	22
Strap	#10 TEKS Screw	32	32	25	32
to Steel	#12 TEKS Screw	35	35	26	35
Strap Anchor to Concrete	3/16" Hilti Kwik Con+	24	24	19	24
Strap Anchor to CMU	3/16" Hilti Kwik Con+	17	17	13	17

If the spacing reported in Table 6 exceeds the as-tested spacing reported in Table 2, the as tested spacing shall govern. Spacing is limited to 12" on center maximum.

Dual Casement Mullion end reaction = 683 lbs

• In addition to the on center spaced anchors, locate a group of four (4) additional anchors at each intermediate mullion location, head and sill. Four (4) total anchors spaced minimum 2" apart. Available capacity in the two adjacent anchors will withstand 114 lb minimum each.

Reference Drawings

The reference drawings are the basis of the analysis presented herein and may not reflect the requirements established by this analysis.

- G3075.01-801-47-R0 M600 Casement Window, 48" x 84", AW-PG70, 11/21/16
- G3081.01-801-47-R3 M600 Twin Casement Window, 72" x 96", AW-PG70, 04/06/18
- H0885.01-801-47-R1 M600 Casement Window, 36" x 72", AW-PG70, 03/09/18
- H0898.01-801-47 M600 Casement Window, 36" x 96", AW-PG70, 05/17/17
- M600 Casement O.S. Installation Instructions, 08-15-2023
- M600 Dual Casement O.S. Installation Instructions, 08-15-2023

As-Tested Installation – Nailing Fin to Wood Blocking

#6 x 1-5/8" Pan Head Wood/Deck Screw (Non-Countersunk) $D_{ws} = (0.270" + 0.256")/2 = 0.263"$ (Nominal Screw Head Diameter) $D_{H} = (0.142" + 0.131")/2 + 0.011" = 0.148"$ (Section 11.0, AAMA TIR-A9)

1-1/2" Minimum Penetration

1/16" thick 6063-T6 Aluminum Nailing Fin

G = 0.55 Minimum SYP 2x Wood Blocking

¼" maximum shim space

ASD Withdrawal

Withdrawal of #6 Wood Screw

W' = 2,850(G²)(D)(Cd)(Cm)(Ct)(Ceg)(Ctn)(L) W' = 2,850 (0.55^2)(0.137'')(1.6)(0.7)(0.7)(1.00)(1.0)(1.50'') W' = 138 lb

Adjustment Factors

Load Duration Factor - Ten Minutes, Cd = 1.6 Moisture Factor - Fabrication > 19% and In-Service > 19%, Cm = 0.7 Temperature Factor - $100^{\circ}F < T \le 125^{\circ}F$, Ct = 0.7 End Grain Factor - No, Ceg = 1.00 Toe Nail Factor - No, Ctn = 1.0

Pull-Over of #8 PH Wood Screw

$$\begin{split} P_{nov} &= C_{pov} t_1 F_{tu1} (D_{ws}\text{-}D_h) / 3.0 \\ P_{nov} &= 1.0 (0.0625'') (30,000 \text{ psi}) (0.263'' - 0.148'') / 3.0 \\ P_{nov} &= 72 \text{ Ib} \end{split}$$

Calculated Capacity of Connection is 72 lb Actual Tested Capacity is 110 lb, 135 lb, and 150 lb Safety Factor = 110/72 = 1.5, 135/72 = 1.875, 150/72 = 2.1 Qualifies 10% Increase to Alternate Anchor Capacity Based on Tested Unit

1 - Alternate Installation – #10 Pan Head Wood Screw, Nail Fin to Wood

#10 Pan Head Wood Screw $D_{ws} = (0.373'' + .0357'')/2 = 0.365'' (Nominal Screw Head Diameter)$ $D_{H} = 0.201'' (Nominal Hole Size, AAMA TIR-A9, Table 11.1)$ 1-1/2'' Minimum Penetration

1/16" thick 6063-T6 Aluminum Nailing Fin

G = 0.55 Minimum SYP 2x Wood Blocking

¼" maximum shim space

ASD Withdrawal

Withdrawal of #10 PH Wood Screw

W' = 2,850(G²)(D)(Cd)(Cm)(Ct)(Ceg)(Ctn)(L) W' = 2,850 (0.55^2)(0.190'')(1.6)(0.7)(0.7)(1.00)(1.0)(1.50'') W' = 192 lb

Adjustment Factors

Load Duration Factor - Ten Minutes, Cd = 1.6 Moisture Factor - Fabrication > 19% and In-Service > 19%, Cm = 0.7 Temperature Factor - $100^{\circ}F < T \le 125^{\circ}F$, Ct = 0.7 End Grain Factor - No, Ceg = 1.00 Toe Nail Factor - No, Ctn = 1.0

Pull-Over of #10 PH Wood Screw

$$\begin{split} P_{nov} &= C_{pov} t_1 F_{tu1} (D_{ws}\text{-}D_h) / 3.0 \\ P_{nov} &= 1.0 (0.0625'') (30,000 \text{ psi}) (0.365'' - 0.201'') / 3.0 \\ P_{nov} &= 104 \text{ lb} \end{split}$$

Calculated Capacity of Connection is 104 lb Capacity of Connection at 10% Over is 114 lb (OK per Tested Capacity)

2 - Alternate Installation – #10 Round Washer Head Wood Screw, Nail Fin to Wood

#10 Round Washer Head Wood Screw D_{ws} = (0.500" + .472")/2 = 0.486" (Nominal Screw Head Diameter)

D_H = 0.201" (Nominal Hole Size, AAMA TIR-A9, Table 11.1)

1-1/2" Minimum Penetration

1/16" thick 6063-T6 Aluminum Nailing Fin

G = 0.55 Minimum SYP 2x Wood Blocking

¼" maximum shim space

ASD Withdrawal

Withdrawal of #10 Wood Screw

W' = 2,850(G²)(D)(Cd)(Cm)(Ct)(Ceg)(Ctn)(L) W' = 2,850 (0.55^2)(0.190'')(1.6)(0.7)(0.7)(1.00)(1.0)(1.50'') W' = 192 lb

Adjustment Factors

Load Duration Factor - Ten Minutes, Cd = 1.6 Moisture Factor - Fabrication > 19% and In-Service > 19%, Cm = 0.7 Temperature Factor - $100^{\circ}F < T \le 125^{\circ}F$, Ct = 0.7 End Grain Factor - No, Ceg = 1.00 Toe Nail Factor - No, Ctn = 1.0

Pull-Over of #10 Round Washer Head Wood Screw

$$\begin{split} P_{nov} &= C_{pov} t_1 F_{tu1} (D_{ws} - D_h) / 3.0 \\ P_{nov} &= 1.0 (0.0625'') (30,000 \text{ psi}) (0.486'' - 0.201'') / 3.0 \\ P_{nov} &= 178 \text{ lb} \end{split}$$

Calculated Capacity of Connection is 178 lb

3 - Alternate Installation – #12 PH Wood Screw, Nail Fin to Wood

- #12 Pan Head Wood Screw
- 1-1/2" Minimum Penetration
- 1/16" thick 6063-T6 Aluminum Nailing Fin
- G = 0.55 Minimum SYP 2x Wood Blocking
- ¼" maximum shim space

ASD Withdrawal

Withdrawal of #12 PH Wood Screw

W' = 2,850(G²)(D)(Cd)(Cm)(Ct)(Ceg)(Ctn)(L) W' = 2,850 (0.55^2)(0.216'')(1.6)(0.7)(0.7)(1.00)(1.0)(1.50'') W' = 219 lb

Adjustment Factors

Load Duration Factor - Ten Minutes, Cd = 1.6 Moisture Factor - Fabrication > 19% and In-Service > 19%, Cm = 0.7 Temperature Factor - $100^{\circ}F < T \le 125^{\circ}F$, Ct = 0.7 End Grain Factor - No, Ceg = 1.00 Toe Nail Factor - No, Ctn = 1.0

Pull-Over of #12 PH Wood Screw

$$\begin{split} &\mathsf{P}_{\mathsf{nov}} = \mathsf{C}_{\mathsf{pov}} t_1 \mathsf{F}_{\mathsf{tu1}} (\mathsf{D}_{\mathsf{ws}}\text{-}\mathsf{D}_{\mathsf{h}}) / 3.0 \\ &\mathsf{P}_{\mathsf{nov}} = 1.0 (0.0625'') (30,000 \text{ psi}) (0.416'' - 0.228'') / 3.0 \\ &\mathsf{P}_{\mathsf{nov}} = 118 \text{ lb} \end{split}$$

Calculated Capacity of Connection is 118 lb Capacity of Connection at 10% Over is 130 lb (OK per Tested Capacity)

4 - Alternate Installation – #10 HWH TEKS Screw, Nailing Fin to Steel Stud

#10 HWH TEKS Screw

Full Penetration +3 Threads

1/16" thick 6063-T6 Aluminum Nailing Fin

Minimum 18 Gauge 33 KSI Steel Stud (Qualifies thicker and stronger steel)

¼" maximum shim space

Allowable Tension of #10-16 TEKS Screw V_a = 885 lb (ESR-1976)

Pull-Over of #10 HWH TEKS Screw in Nail Fin

$$\begin{split} &\mathsf{P}_{nov} = \mathsf{C}_{pov} \mathsf{t}_1 \mathsf{F}_{tu1} (\mathsf{D}_{ws}\text{-}\mathsf{D}_h) / 3.0 \\ &\mathsf{P}_{nov} = 1.0 (0.0625'') (30,000 \text{ psi}) (0.400'' - 0.190'') / 3.0 \\ &\mathsf{P}_{nov} = 131 \text{ Ib} \end{split}$$

Pull-Out of #10 HWH TEKS Screw in Steel Stud

 $P_{not} = 0.85t_c dF_{u2}/3.0$ $P_{not} = 0.85(0.0478")(0.190")(45,000 \text{ psi})/3.0$ $P_{not} = 116 \text{ lb}$

> Calculated Capacity of Connection is 116 lb Capacity of Connection at 10% Over is 128 lb (OK per Tested Capacity)

5 - Alternate Installation – #12 HWH TEKS Screw, Nailing Fin to Steel Stud

#12 HWH TEKS Screw

Full Penetration +3 Threads

1/16" thick 6063-T6 Aluminum Nailing Fin

Minimum 18 Gauge 33 KSI Steel Stud (Qualifies thicker and stronger steel)

¼" maximum shim space

Allowable Tension of #12 HWH TEKS Screw V_a = 1184 lb (ESR-1976)

Pull-Over of #12 HWH TEKS Screw in Nail Fin

$$\begin{split} &\mathsf{P}_{nov} = \mathsf{C}_{pov} \mathsf{t}_1 \mathsf{F}_{tu1} (\mathsf{D}_{ws}\text{-}\mathsf{D}_h) / 3.0 \\ &\mathsf{P}_{nov} = 1.0 (0.0625'') (30,000 \text{ psi}) (0.415'' - 0.216'') / 3.0 \\ &\mathsf{P}_{nov} = 124 \text{ Ib} \end{split}$$

Pull-Out of #12 HWH TEKS Screw in Steel Stud $P_{not} = 0.85t_c dF_{u2}/3.0$

 $P_{not} = 0.85(0.0478")(0.216")(45,000 \text{ psi})/3.0$ $P_{not} = 131 \text{ lb}$

> Calculated Capacity of Connection is 124 lb Capacity of Connection at 10% Over is 136 lb (OK per Tested Capacity)

6 - Alternate Installation – Nail Fin to Concrete

3/16" Hilti Kwik-Con+ Anchor D_{ws} = 0.432" (Nominal Screw Head Diameter) Per Hilti Material Specification D_H = 0.170" + 0.011" = 0.181" (Shank diameter + clearance) 1-1/2" Minimum Edge Distance, 1" Minimum Embedment, 2" Minimum Spacing

0.062" thick 6063-T6 Aluminum Nailing Fin

Minimum f'_c = 3,000 psi Concrete

 $\frac{\text{Allowable Tension of 3/16" Hilti Kwik-Con+ Anchor}}{P_{ss}/\Omega = 112 \text{ lb}}$ (NOA-No. 21-0628.20)

 $\begin{array}{l} \label{eq:pull-Over of 3/16" Hilti Kwik-Con II+ Anchor} \\ P_{nov} = C_{pov} t_1 F_{tu1} (D_{ws} - D_h) / 3.0 \\ P_{nov} = 1.0 (0.062") (30,000 \ psi) (0.432" - 0.181") / 3.0 \\ P_{nov} = 156 \ lb \end{array}$

Capacity of Connection is 112 lb Capacity of Connection at 10% Over is 123 lb (OK per Tested Capacity)

7 - Alternate Installation – Nail Fin to CMU

3/16" Hilti Kwik-Con+ Anchor

1-1/2" Minimum Edge Distance, 1" Minimum Embedment, 3" Minimum Spacing

0.062" thick 6063-T6 Aluminum Nailing Fin

Minimum ASTM C90 CMU

Allowable Tension of 3/16" Hilti Kwik-Con+ Anchor $P_{ss}/\Omega = 116$ lb(NOA-No. 21-0628.20)

 $\frac{\text{Pull-Over of 3/16" Hilti Kwik-Con II+ Anchor}}{P_{nov} = C_{pov}t_1F_{tu1}(D_{ws}-D_h)/3.0}$ $P_{nov} = 1.0(0.062")(30,000 \text{ psi})(0.432" - 0.181")/3.0$ $P_{nov} = 156 \text{ lb}$

Capacity of Connection is 116 lb Capacity of Connection at 10% Over is 128 lb (OK per Tested Capacity)

8 - Alternate Installation – Strap Anchor to Wood

#10 x 1-1/2" Wood Screw and #10 Round Washer Head Wood Screw

0.08" thick 6063-T6 Aluminum Strap Anchor

1/4" Maximum Shim Space

G = 0.55 Minimum SYP 2x Wood Blocking

<u>Allowable Shear of #10 x 1-1/2" Wood Screw</u> Z' = 154 lb (Limited by Mode III_s, See Following 2 Pages)

Bearing of #10 x 1-1/2" Wood Screw on Strap Anchor $V_a = 2DtF_u/n_u$ $V_a = 2(0.190")(0.08")(30,000 \text{ psi})/3.0$ $V_a = 304 \text{ lb}$

Bending of #10 x 1-1/2" Wood Screw

$$\begin{split} & L = 1/4" \text{ (maximum shim space)} \\ & S = \pi d^3/32 = \pi (0.152")^3/32 = 0.000345 \text{ in}^3 \\ & F_b = (1.3)(0.6F_y) = (1.3)(0.6)(90,000 \text{ psi}) = 70,200 \text{ psi} (1.3 \text{ factor for weak axis bending)} \\ & F_b = M/S = (VL/2)/S (L/2 \text{ for guided bending)} \\ & V = 2SF_b/L = (2)(0.000345 \text{ in}^3)(70,200 \text{ psi})/0.25" = 194 \text{ lb} \end{split}$$

Capacity of Connection is 154 lb

PROJECT: QUAKER M600 Casement Windows	BY: TAD	DATE: 08/31/23	
UICEICER	PROJECT NO.: Q4430.01-122-34	CKD: ARK	SHEET: 19 OF 41

<u>Alternate Installation – Strap Anchor to Wood</u> (Continued)

Lateral Design Stre	ength	of Wood	Connections	ANSI / AWC NDS-201
Data				
Fastener				
Fastener	=	#10 W	/ood Screw	
Shank Dia	=	0.190	in.	
Root Dia.	=	0.152	in.	
F_{yb}	=	80,000	psi	
Fastener length	=	2.000	in.	
Main Mem	ber			
Material	=		SPF	
G	=	0.55		
θ	=	90	<= (Angle of load to grain $0^{\circ} \le \theta \le 90^{\circ}$)	
Fe	=	3,350	psi	Appendix J
Thickness	=	1.500	in.	
Side Memb	ber	6062 T	6 Aluminum	
Material	_	N/A	8 Aluminum	
0 0	_	0	$<-$ (Angle of load to grain $0^{\circ} < 0 < 00^{\circ}$)	
6 F	_	37 500	$<-$ (Angle of load to grain $0 \le 0 \le 90$)	NDS 2018
Thickness	=	0.063	in.	1052010
lculations				
Latoral Bo	aring F	actors		
D	=	0 152	in	
l	=	1.500	in.	
V m K₂	=	1.25		Table 12.3.1B
K-	=	2.20		Table 12 3 1B
R _D	_	0.080		Table 12.3.15
К _е	_	0.009		Table 12.2.1A
R _t	=	23.81		Table 12.3.1A
k ₁	=	0.8593		Table 12.3.1A
k ₂	=	0.5399		Table 12.3.1A
k ₃	=	13.77		Table 12.3.1A
Yield Mode	e	R _d	1	
	I _m , I _s	2.20	1	Table 12.3.1B
			-	
	II	2.20		Table 12.3.1B

intertek	PROJECT: QUAKER M600 Casement Windows	BY: TAD	DATE: 08/31/23
UICERCER	PROJECT NO.: Q4430.01-122-34	CKD: ARK	SHEET: 20 OF 41

<u>Alternate Installation – Strap Anchor to Wood</u> (Continued)

Lateral De	sign Va	lues. Z	-		
Mode I _m	=	347	lbf		Eq 12.3-1
Mode I _s	=	163	lbf		Eq 12.3-2
Mode II	=	140	lbf		Eq 12.3-3
Mode III _m	=	159	lbf		Eq 12.3-4
Mode III _s	=	96	lbf	<===== Minimum Value	Eq 12.3-5
Mode IV	=	134	lbf		Eq 12.3-6
C _D	=	1.6			11.3.2
V	Vet Serv	vice Factor			
Fabrication/In-	Service	Dry/Dry			
C _M	=	1.0			Table 11.3.3
In service temp	erature	T	≤100°F		
Ct	=	1.0			Table 11.3.4
Cg	=	1.0			11.3.6
C_{Δ}	=	1.0			12.5.1
Is fastener installed in end	grain?	No			
C _{eg}	=	1.00			12.5.2
Is fastener part of a diap	hragm?	No			
C _{di}	=	1.0			12.5.3
Is fastener toe-	nailed?	No			
C _{tn}	=	1.00			12.5.4
Z'	=	<u>154</u>	lbf		Table 12.3.1

9 - Alternate Installation - #12 PH Wood Screw, Nail Fin to Wood

#12 Pan Head Wood Screw

0.08" thick 6063-T6 Aluminum Strap Anchor

1/4" Maximum Shim Space

G = 0.55 Minimum SYP 2x Wood Blocking

<u>Allowable Shear of #12 PH Wood Screw</u> Z' = 193 lb (Limited by Mode III_s, See Following 2 Pages)

Bearing of #12 PH Wood Screw on Strap Anchor

 $V_a = 2DtF_u/n_u$ $V_a = 2(0.216")(0.08")(30,000 \text{ psi})/3.0$ $V_a = 346 \text{ lb}$

Bending of #12 PH Wood Screw

$$\begin{split} L &= 1/4'' \text{ (maximum shim space)} \\ S &= \pi d^3/32 = \pi (0.171'')^3/32 = 0.0005 \text{ in}^3 \\ F_b &= (1.3)(0.6F_y) = (1.3)(0.6)(90,000 \text{ psi}) = 70,200 \text{ psi} (1.3 \text{ factor for weak axis bending)} \\ F_b &= M/S = (VL/2)/S \text{ (L/2 for guided bending)} \\ V &= 2SF_b/L = (2)(0.0005 \text{ in}^3)(70,200 \text{ psi})/0.25'' = 275 \text{ lb} \end{split}$$

Capacity of Connection is 193 lb

intertek -	PROJECT: QUAKER M600 Casement Windows	BY: TAD	DATE: 08/31/23
UICALCAK	PROJECT NO.: Q4430.01-122-34	CKD: ARK	SHEET: 22 OF 41

<u>Alternate Installation – Strap Anchor to Wood</u> (Continued)

Lateral Design Str	ength	of Wood	Connections	ANSI / AWC NDS-2018
Data				
Fastener				
Fastener	=	#12 W	Vood Screw	
Shank Dia	=	0.216	in.	
Root Dia.	=	0.171	in.	
Fyb	=	80,000	psi	
Fastener length	=	2.000	in.	
Main Men	ıber			
Material	=		SPF	
G	=	0.55		
θ	=	90	<= (Angle of load to grain $0^{\circ} \le \theta \le 90^{\circ}$)	
Fe	=	3,350	psi	Appendix J
Thickness	=	1.500	in.	
Side Mem	ber			
Material	=	6063 T	6 Aluminum	
G	=	N/A		
θ	=	0	<= (Angle of load to grain $0^{\circ} \le \theta \le 90^{\circ}$)	
F _{es}	=	37,500	psi	NDS 2018
Thickness	=	0.063	in.	
Calculations				
Lateral Be	aring F	actors		
D	=	0.171	in.	
ℓ_{m}	=	1.500	in.	
K _θ	=	1.25		Table 12.3.1B
Kp	=	2.21		Table 12.3.1B
R	=	0.089		Table 12.3.1A
R.	=	23.81		Table 12.3.1A
kı	=	0.8593		Table 12.3.1A
ka ka	=	0 5564		Table 12 3 1A
k ₂ k ₃	=	15.41		Table 12.3.1A
	-			
Yield Mod	le	R _d	4	m 11 40.04D
	I _m , I _s	2.21	4	Table 12.3.1B
	II	2.21	4	Table 12.3.1B
111,	_n , III _s , IV	2.21	J	Table 12.3.1B

intertek	PROJECT: QUAKER M600 Casement Windows	BY: TAD	DATE: 08/31/23
UICERCER	PROJECT NO.: Q4430.01-122-34	CKD: ARK	SHEET: 23 OF 41

<u>Alternate Installation – Strap Anchor to Wood</u> (Continued)

esign Va	lues. Z	-			
=	389	lbf			Eq 12.3-1
=	183	lbf			Eq 12.3-2
=	157	lbf			Eq 12.3-3
=	184	lbf			Eq 12.3-4
=	120	lbf	<===== Minimum Value		Eq 12.3-5
=	169	lbf			Eq 12.3-6
=	1.6				11.3.2
Wet Serv	vice Factor				
I-Service	Dry/Dry				
=	1.0				Table 11.3.3
perature	T	≤100°F			
=	1.0				Table 11.3.4
=	1.0				11.3.6
=	1.0				12.5.1
d grain?	No				
=	1.00				12.5.2
phragm?	No				
=	1.0				12.5.3
e-nailed?	No				
=	1.00				12.5.4
=	<u>193</u>	lbf			Table 12.3.1
	esign Va = = = = = Wet Servi- service = perature = d grain? = phragm? = phragm? = = -nailed? = =	esign Values, Z = 389 = 183 = 157 = 184 = 120 = 169 = 1.6 Wet Service Factor - Service Dry/Dry = 1.0 perature T: = 1.0 = 1.0 = 1.0 d grain? No = 1.00 phragm? No = 1.0 phragm? No = 1.0 = 1.0	esign Values, Z = 389 lbf = 183 lbf = 183 lbf = 184 lbf = 120 lbf = 169 lbf = 169 lbf = 1.6 Wet Set Values Factor - Set 0 Dry/Dry = 1.0 = 1.0 Battor = 1.0 = 1.0 = 1.0 Battor = 1.0 = 1.0 = 1.0 Battor = 1.0 = 1	esign Values, Z = 389 lbf = 183 lbf = 183 lbf = 184 lbf = 184 lbf = 184 lbf = 120 lbf = 169 lbf = 169 lbf = 169 lbf = 1.6 VetSverver VetSverver Factor Interver e-senvice T<100°F	esign Values, Z = 389 lbf = 183 lbf = 157 lbf = 184 lbf = 120 lbf = 169 lbf = 169 lbf = 169 lbf = 1.6 VetServer VetServer Factor Interver e-service Dry/Dry Interver = 1.0 Interver = 1.0 Interver = 1.0 Interver = 1.00 Interver

10 - Alternate Installation – Strap Anchor to Steel Stud

#10-16 TEKS Screw

0.08" thick 6063-T6 Aluminum Strap Anchor

Full Penetration +3 Threads

1/4" Maximum Shim Space

Minimum 18 gauge 33 KSI Steel Stud

Allowable Shear of #10-16 TEKS Screw

 $P_{ss}/\Omega = 573 \text{ lb} \text{ (ESR-1976)}$

Bearing of #10-16 TEKS Screw on Strap Anchor

V_a = 2DtF_u/n_u V_a = 2(0.190")(0.08")(30,000 psi)/3.0 V_a = 304 lb

 $\frac{\text{Bearing of #10-16 TEKS Screw on Steel Stud}}{V_a = 2.7 \text{DtF}_{tu}/3.0}$ $V_a = 2.7(0.190")(0.0478")(45,000 \text{ psi})/3.0$ $V_a = 367 \text{ lb}$

 $\frac{\text{Tilting of #10-16 TEKS Screw in Steel Stud}}{V_a = 4.2(t_2^3 D)^{1/2} F_{tu2}/n_s}$ $V_a = 4.2(0.0478^{"3} \times 0.190")^{1/2} (45,000 \text{ psi})/3.0$ $V_a = 287 \text{ lb}$

 $\begin{array}{l} \underline{\text{Bending of #10-16 TEKS Screw}} \\ L = 1/4" (Maximum Shim Space) \\ S = \pi d^3/32 = \pi (0.190")^3/32 = 0.0007 \text{ in}^3 \\ F_b = (1.3)(0.6F_v) = (1.3)(0.6)(92,000 \text{ psi}) = 71,760 \text{ psi} (1.3 \text{ factor for weak axis bending}) \\ F_b = M/S = (VL/2)/S (L/2 \text{ for guided bending}) \\ V = 2SF_b/L = (2)(0.0007 \text{ in}^3)(71,760 \text{ psi})/0.25" = 386 \text{ lb} \end{array}$

Capacity of Connection is 287 lb

11 - Alternate Installation – Strap Anchor to Steel Stud

#12-14 TEKS Screw

0.08" thick 6063-T6 Aluminum Strap Anchor

Full Penetration +3 Threads

1/4" Maximum Shim Space

Minimum 18 gauge 33 KSI Steel Stud

Allowable Shear of #10-16 TEKS Screw

 $P_{ss}/\Omega = 724 \text{ lb} \text{ (ESR-1976)}$

Bearing of #10-16 TEKS Screw on Strap Anchor

V_a = 2DtF_u/n_u V_a = 2(0.216")(0.08")(30,000 psi)/3.0 V_a = 346 lb

 $\frac{\text{Bearing of #10-16 TEKS Screw on Steel Stud}}{V_a = 2.7 \text{DtF}_{tu}/3.0}$ $V_a = 2.7(0.216")(0.0478")(45,000 \text{ psi})/3.0$ $V_a = 356 \text{ lb}$

Tilting of #10-16 TEKS Screw in Steel Stud $V_a = 4.2(t_2^{3}D)^{1/2}F_{tu2}/n_s$ $V_a = 4.2(0.0478^{"3} \times 0.216")^{1/2}(45,000 \text{ psi})/3.0$ $V_a = 306 \text{ lb}$

 $\begin{array}{l} \underline{\text{Bending of \#10-16 TEKS Screw}} \\ L = 1/4" (Maximum Shim Space) \\ S = \pi d^3/32 = \pi (0.216")^3/32 = 0.001 \text{ in}^3 \\ F_b = (1.3)(0.6F_y) = (1.3)(0.6)(92,000 \text{ psi}) = 71,760 \text{ psi} (1.3 \text{ factor for weak axis bending}) \\ F_b = M/S = (VL/2)/S (L/2 \text{ for guided bending}) \\ V = 2SF_b/L = (2)(0.001 \text{ in}^3)(71,760 \text{ psi})/0.25" = 574 \text{ lb} \end{array}$

Capacity of Connection is 306 lb

12 - Alternate Installation – Strap Anchor to Concrete

- 3/16" Hilti Kwik-Con+ Anchor
- 1-1/2" Minimum Edge Distance, 1" Minimum Embedment, 2" Minimum Spacing
- 1/4" Maximum Shim Space

0.08" thick 6063-T6 Aluminum Strap Anchor

Minimum f'_c = 3,000 psi Concrete

Allowable Shear of 3/16" Hilti Kwik-Con+ Anchor $P_{ss}/\Omega = 215$ lb(NOA-No. 21-0628.20)

Bearing of 3/16" Hilti Kwik-Con+ Anchor on Strap Anchor $V_a = 2DtF_u/n_u$ $V_a = 2(0.170")(0.08")(30,000 \text{ psi})/3.0$ $V_a = 272 \text{ lb}$

Bending of 3/16" Hilti Kwik-Con+

L = 1/4" (Maximum Shim Space) S = $\pi d^3/32 = \pi (0.170")^3/32 = 0.000482 \text{ in}^3$ F_b = (1.3)(0.6F_y) = (1.3)(0.6)(137,000 psi) = 106,860 psi (1.3 factor for weak axis bending) F_b = M/S = (VL/2)/S (L/2 for guided bending) V = 2SF_b/L = (2)(0.000482 in³)(106,860 psi)/0.25" = 412 lb

Capacity of Connection is 215 lb

13 - Alternate Installation – Strap Anchor to CMU

3/16" Hilti Kwik-Con II+ Anchor

1-1/2" Minimum Edge Distance, 1" Minimum Embedment, 3" Minimum Spacing

1/4" Maximum Shim Space

0.08" thick 6063-T6 Aluminum Strap Anchor

Minimum ASTM C90 CMU Block

Allowable Shear of 3/16" Hilti Kwik-Con+ Anchor $P_{ss}/\Omega = 150$ lb(NOA-No. 21-0628.20)

 $\frac{\text{Bearing of 3/16" Hilti Kwik-Con+ Anchor on Strap Anchor}}{V_a = 2DtF_u/n_u}$ $V_a = 2(0.170")(0.08")(30,000 \text{ psi})/3.0$

V_a = 272 lb

Bending of 3/16" Hilti Kwik-Con+

$$\begin{split} & L = 1/4'' \text{ (Maximum Shim Space)} \\ & S = \pi d^3/32 = \pi (0.170'')^3/32 = 0.000482 \text{ in}^3 \\ & F_b = (1.3)(0.6F_y) = (1.3)(0.6)(137,000 \text{ psi}) = 106,860 \text{ psi} (1.3 \text{ factor for weak axis bending)} \\ & F_b = M/S = (VL/2)/S \text{ (L/2 for guided bending)} \\ & V = 2SF_b/L = (2)(0.000482 \text{ in}^3)(106,860 \text{ psi})/0.25'' = 412 \text{ lb} \end{split}$$

Capacity of Connection is 150 lb

iotoctok	PROJECT: QUAKER M600 Casement Windows	BY: TAD	DATE: 08/31/23
UICERCER	PROJECT NO.: Q4430.01-122-34	CKD: ARK	SHEET: 28 OF 41

Dual Casement Intermediate Mullion Analysis

INTERTEK - ARCHITECTURAL TESTING, INC. Tanya Dolby Friday, August 25, 2023 8:01 AM

Geometric Properties						
Area	1.418	in^2				
Ix	2.060	in^4				
Ixy	-0.004	in^4				
Гу	0.415	in^4				
Sx+	1.527	in^3				
Sx-	1.084	in^3				
Sy+	0.279	in^3				
Sy-	0.275	in^3				
Xc	0.000	in				
Yc	0.000	in				
nx	1.205	in				
ry	0.541	in				

Overall Properties

Depth	3.250 in
Perimeter	14.389 in
Weight	0.142 lb/in
Width	3.000 in

Quaker							
	Cbeam	R2					
Intertek							
8/25/2023	16:08	File:	Mullion				

M600 Casement By: TAD

		Deflecti	on Results				
Max. Def	lection =	-0.8874	L/108	(Span	1, 0	48.00")	
							_
		Stres	s Results				
Span			M(in-lb)	fb-m(ksi)		
1 0	48.00	" =	19215	17.726			
		Member	Informatio	n			
Span	Length(i	n) I(i	.n^4) S	5(in^3)	E (ps:	i)	

Span	Length (in)	I(in^4)	S(in^3)	E(psi)	
1	96.000	2.060	1.084	1.0e+7	

Distributed Load Information						
Span	Wl(#/in)	W2(#/in)	Xl(in)	X2(in)		
1	0.000	17.500	0.000	18.000		
	17.500	17.500	18.000	78.000		
	17.500	0.000	78.000	96.000		

Support Joint	Reactions Pounds	
1	683	
2	683	

Anchor Reaction = 683 lbs

intertek	PROJECT: QUAKER M600 Casement Windows	BY: TAD DATE: 08/31/23		
UICERCER	PROJECT NO.: Q4430.01-122-34	CKD: ARK	SHEET: 30 OF 41	

Glass Analysis

Test Reports G3075.01-801-47-R0, G3081.01-801-47-R1, H0898.01-801-47-R0

intoctok	PROJECT: QUAKER M600 Casement Windows	BY:	TAD	DATE: 08/31/23
UICEICEK	PROJECT NO.: Q4430.01-122-34	CKD	: ARK	SHEET: 31 OF 41

Analysis 1

nalysis 1 oad Resistance Report					August 25, 2023
Details					
Selected standard:	ASTM E1300	Extended Ba	sic		
Glazing Construc	tion (Doub	le Glazed I	insulating U	nit)	
Exterior Lite Prop	erties (1/4 in	. Monolithic)		
Construction:	1/4 in. (AN)			
Airspace Properti	es		_		
Thickness:	0.480 in.				
Interior Lite Prop	erties (1/4 in	. Monolithic	<u>)</u>		
Construction:	1/4 in. (AN))			
Load Resistance					
Short Duration (3	Sec)				
Description Exterior Lite Interior Lite	<u>NEL</u> 39.0 psf 39.0 psf	<u>GTF</u> 0.900 0.900	<u>LSF</u> 1/0.500 1/0.500	<u>LR</u> 70.2 psf 70.2 psf	
Comparisons					
Scenario 1 70.0 psf 3.00 se Approximate cen	c <= 70.2 psf nter of glass de	flection	ок		
Exterior Lite Interior Lite			0.56 0.56	in. in.	
otes					

Load resistance values are computed in accordance with ASTM E1300-16 Section 6.2 and are based on non-factored load values calculated in a manner consistent with those presented in ASTM E1300-16.

intertek	PROJECT: QUAKER M600 Casement Windows	BY: TAD DATE: 08/31/23		
	PROJECT NO.: Q4430.01-122-34	CKD: ARK	SHEET: 32 OF 41	

Test Report H0885.01-801-47-R1

intoctok	PROJECT: QUAKER M600 Casement Windows	BY: TAD	DATE: 08/31/23
UICEICEK	PROJECT NO.: Q4430.01-122-34	CKD: ARK	SHEET: 33 OF 41

Analysis 1

Load Resistance Report

August 25, 2023

Details

Selected standard: ASTM E1300 Extended Basic

Glazing Construction (Double Glazed Insulating Unit)

Exterior Lite Properties (3/16 in. Monolithic)

Construction: 3/16 in. (AN)

Airspace Properties

Thickness: 0.600 in.

Interior Lite Properties (3/16 in. Monolithic)

Construction: 3/16 in. (AN)

Load Resistance

Short Duration (3	3 Sec)
-------------------	--------

Description	NEL	GTE	LSF	LR
Exterior Lite	41.4 psf	0.900	1/0.500	74.6 psf
Interior Lite	41.4 psf	0.900	1/0.500	74.6 psf

Comparisons

Scenario 1 70.0 psf 3.00 sec <= 74.6 psf Approximate center of glass deflection	ок
Exterior Lite	0.37 in.
Interior Lite	0.37 in.

Notes

Load resistance values are computed in accordance with ASTM E1300-16 Section 6.2 and are based on non-factored load values calculated in a manner consistent with those presented in ASTM E1300-16.

PROJECT NO.: Q4430.01-122-34

Anchorage Spacing Calculation

Punched Opening Anchor Reactions

Roark's Formulas for Stress & Strain (Sixth Ed.) Table 26-1a

Nail Fin Anchor	Window Design Pressure:	70.00						
		Anchor	Width, w	Height, h			R	Anchor Spacing
Substrate	Anchor	Capacity	(inch)	(inch)	w/h	gamma	(lb/in)	(in)
	#10.Wood Screw	11/1 lb	36.00	96.00	2.67	0.51	8.84	13"
	#10 W000 Sciew	11410	48.00	84.00	1.75	0.50	11.61	10''
Wood	#10 Round Washer Head Wood Screw	178 lb	36.00	96.00	2.67	0.51	8.84	20"
	#10 Round Washer Head Wood Sciew		48.00	84.00	1.75	0.50	11.61	15"
	#12 Wood Screw	130 lb	36.00	96.00	2.67	0.51	8.84	15"
			48.00	84.00	1.75	0.50	11.61	11"
	#10-16 TEKS	128 lb	36.00	96.00	2.67	0.51	8.84	14"
Steel			48.00	84.00	1.75	0.50	11.61	11"
Stud	#12 16 TEVS	136 lb	36.00	96.00	2.67	0.51	8.84	15"
	#12-10 12K3		48.00	84.00	1.75	0.50	11.61	12"
Concrete	2/16" Hilti Kwik Cont	122 lb	36.00	96.00	2.67	0.51	8.84	14"
concrete	3/10 Thit (Wik Cont	12310	48.00	84.00	1.75	0.50	11.61	11"
CMU	3/16" Hilti Kwik Cont	128 lb	36.00	96.00	2.67	0.51	8.84	14"
CIVIO	Sy 10 Thit Wik Coll+	128 lb	48.00	84.00	1.75	0.50	11.61	11"

Strap Anchor	Window Design Pressure:	70.00						
		Anchor	Width, w	Height, h			R	Calculated Anchor
Substrate	Anchor	Capacity	(inch)	(inch)	w/h	gamma	(lb/in)	Spacing
	#10.Wood Screw	154 lb	36.00	96.00	2.67	0.51	8.84	17''
	#10 W00d Sciew	10410	48.00	84.00	1.75	0.50	11.61	13"
Wood	#10 Round Washer Head Wood Screw	154 lb	36.00	96.00	2.67	0.51	8.84	17''
			48.00	84.00	1.75	0.50	11.61	13"
	#12 Wood Screw	193 lb	36.00	96.00	2.67	0.51	8.84	22"
			48.00	84.00	1.75	0.50	11.61	17''
	#10 16 TEKS	207 lh	36.00	96.00	2.67	0.51	8.84	32"
Steel	#10-10 TEKS	267 10	48.00	84.00	1.75	0.50	11.61	25"
Stud	#10 16 TEVS	200 14	36.00	96.00	2.67	0.51	8.84	35"
	#12-10 TEKS	30010	48.00	84.00	1.75	0.50	11.61	26''
Concrata	2/16" Hilti Kwik Cont	215 lb	36.00	96.00	2.67	0.51	8.84	24''
concrete	3/10 Hild Kwik Coll+	21310	48.00	84.00	1.75	0.50	11.61	19"
CMU	2/16" Hilti Kwik Con	150 lb	36.00	96.00	2.67	0.51	8.84	17"
CIVIO	5/10 HILL KWIK COIH	12010	48.00	84.00	1.75	0.50	11.61	13"

Anchor Spacing is limited to the as tested spacing of 12" maximum on center.

Dual Casement Mullion end reaction = 683 lbs

 In addition to the on center spaced anchors, locate a group of four (4) additional anchors at each intermediate mullion location, head and sill. Four (4) total anchors spaced minimum 2" apart. Available capacity in the two adjacent anchors will withstand 114 lb minimum each. PROJECT NO.: Q4430.01-122-34

REFERENCE MATERIAL

#10-16 TEKS Screw References

SCREW	DIAMETER	ALLOWABLE FAS	TENER STRENGTH	NOMINAL FASTENER STRENGTH			
DESIGNATION	(in.)	Tensile, P _{ts} /Ω (lbf)	Shear, P _{ss} /Ω (lbf)	Tensile, P _{ts} (lbf)	Shear, P _{ss} (lbf)		
10-16	0.190	885	573	2654	1718		
12-14	0.216	1184	724	3551	2171		
12-24	0.216	1583	885	4750	2654		
¹ / ₄ -14	0.250	1605	990	4816	2970		
¹ / ₄ -28	0.250	1922	1308	5767	3925		

TABLE 5—FASTENER STRENGTH OF SCREWS^{1, 2, 3, 4, 5}

For SI: 1 inch = 25.4 mm, 1 lbf = 4.45 N.

¹For tension connections, the least of the allowable pull-out, pullover, and fastener tension strength found in Tables 2, 3, and 5, respectively, must be used for design.

²For shear connection, the lower of the allowable shear (bearing) and the allowable fastener shear strength found in Table 4 and 5, respectively, must be used for design.

⁴See Section 4.1 for fastener spacing and end distance requirements. ⁴Nominal strengths are based on laboratory tests

⁵To calculate LRFD values, multiply nominal strength values by the LRFD Φ factor of 0.5.

TABLE 22.11 (Spaced Threads)

						6063-T6						
Nominal	D	Aluminum Thickness (Inches)										
Diameter	Thread	0.038	0.060	0.072	0.080	0.094	0.125	0.156	0.188	0.250	0.312	0.375
Per Inch	(Inch)		Allowable Pullout (Pounds)									
#8-18	0.1640	53	83	100	132	155	235	350	468	669	835	1004
#10-16	0.1900	61	96	116	153	180	239	372	509	775	968	1163
#12-14	0.2160		110	132	174	204	271	374	530	833	1100	1322
1/4-14	0.2500		127	152	201	236	314	433	614	964	1273	1530
5/16-12	0.3125								809	1334	1860	2296
3/8-12	0.3750								971	1601	2232	2755
				6063-T6								
F _U (Tensile Ultimate Strength) 30000 psi								Sł	nading indi	cates trans	sition regio	on.
F _Y (Tensile	Fr(Tensile Yield Strength) 25000 psi											

NOTE 32:

1. Each table lists allowable pull-out (internal threads) values. $S_F = 3.0$ for $D \le 0.25$ "; $S_F = 2.5$ for $D \ge 0.3125$ ". Fastener allowable strength (basic tension and external threads) needs to be checked separately. 2. For pilot hole sizes refer to tables 21.1 to 21.7

Fastener pullout not shown for aluminum thickness less than approximately 2 threads, unless tested at a lesser thickness.
 Multiple fastener connections and embrittlement need to be checked separately.

intoctok	PROJECT: QUAKER M600 Casement Windows	BY: TAD	DATE: 08/31/23
UICERCER	PROJECT NO.: Q4430.01-122-34	CKD: ARK	SHEET: 36 OF 41

<u>Appendix</u>

Pan Head w/ Phillips Recess

WOOD SCREWS TYPE-17 DEEP THREAD

Nominal	A Head Diameter		H Head Height		F	R	м	D		1	r	Torque	
Diameter & Threads					Recess Penetration Depth		Recess Diameter	Major Diameter		Threade	d Length	(Steel screws)	Recess Size
per Inch	Max	Min	Max	Min	Мах	Min	Ref	Max	Min	L≤1"	L>1"	Min	
6-13	0.270	0.256	0.097	0.087	0.080	0.055	0.159	0.142	0.131	Full thread	2/3 thread	21	#2
7-12	0.296	0.281	0.106	0.096	0.089	0.064	0.170	0.158	0.147	Full thread	2/3 thread	28	#2
8-11	0.322	0.306	0.115	0.105	0.097	0.071	0.175	0.169	0.159	Full thread	2/3 thread	37	#2
10-9	0.373	0.357	0.133	0.122	0.113	0.089	0.192	0.194	0.185	Full thread	2/3 thread	55	#2
12-8	0.425	0.407	0.151	0.139	0.124	0.098	0.252	0.230	0.213	Full thread	2/3 thread	64	#3
			Up t	o 5/8"						± 0.03			
Toleran	ce on		Over 5	8 to 1.5"						± 0.05			<u> </u>
Leng	th		Over 1.	5 to 2.75						± 0.06			
Over 2.75*									± 0.09				

Description	An externally threaded fastener with a dome-shaped head, cross recess an cavity cut out where the final sev	nd a single lead thread. The shank has a reduced diameter and a chip veral threads end at the tip.
Applications / Advantages	The deeper thread design offers greater resistance to pull-out forces. Popular in fastening cabinet hardware in locations that do not require the head to countersink. The chip cavity (or auger point) are designed to attach hinges to the edge of hardwood face frames.	Used in environments where corrossion resistance is neccesary. The type-17 point enables the screw to more easily penetrate the material into which it's fastened. Can be used in particle board, wood and some plastics.
Material	C1018 - 1022 case-hardened steel	18-8 Stainless Steel
Surface Hardness	Vickers 450 HV minimum	
Case Depth	0.004" - 0.009"	•
Torque	See values in above table	
Plating	See Appendix-A for plating information	Stainless deep thread screws are usually supplied without additional finish.

iotoctok	PROJECT: QUAKER M600 Casement Windows	BY: T/	AD	DATE: 08/3	31/23	}
UICEICEK	PROJECT NO.: Q4430.01-122-34	СКD : А	RK	SHEET: 37	OF	41

WOOD SCREWS

Round Washer Head w/ Square/Phillips Combo Recess

TYPE-17 DEEP THREAD

Nominal Diameter	A Washer Diameter		А		В	E F	4	1	P	v	v	1	2	1		Recess
			Head Di- ameter	Total Head Height		Recess Depth		Washer Thickness		Major Diameter		Threaded Length		Size (Square & Phil-		
	Max	Min	Ref	Max	Min	Max	Min	Max	Min	Max	Min	L≤1"	L>1"	lips)		
8	0.376	0.352	0.305	0.120	0.110	0.080	0.065	0.050	0.030	0.174	0.164	Full thread	2/3 thread	#2		
10	0.500	0.472	0.300	0.130	0.118	0.073	0.049	0.060	0.040	0.197	0.183	Full thread	2/3 thread	#2		
	_			Jp to 5/8"		-		_			+0/-0.0	3				
_	Tolerance on			er 5/8 to 1	5*	-	-	-	-		+0/-0.0	05	-	_		

Tolerance on	Over 5/8 to 1.5"	+0 / -0.05	-
Length	Over 1.5 to 2.75"	+0 / -0.06	
	Over 2.75 to 5*	+0 / -0.09	1

Description	An externally threaded fastener with a dome-shaped head and an integrally formed washer; a recess that can accomodate either a Phil- lips or Square screwdriver; and a single lead thread. The shank has a reduced diameter and a chip cavity cut out where the final several threads, ending at the tip.							
Applications / Advantages	The deeper thread design offers greater resistance to pull-out forces. The chip cavity (or auger point) enables the fastener to drive- especially in denser woodswithout pre-drilling a pilot hole. The head offers a greater bearing surface than a countersunk design. Used to attach surface-mounted door hinges or master lock hasps into dense woods or when attaching two pieces of wood through a pocket hole.							
Material	C1022 case-hardened steel							
Surface Hardness	Rockwell C 45 minimum							
Case Depth	0.004" - 0.009"							
Torque	#B Diameter: 35 kg/cm minimum #10 Diameter: 50 kg/cm minimum							
Plating	See Appendix-A for plating information							

intoctok	PROJECT: QUAKER M600 Casement Windows	BY: TAD	DATE: 08/31/23
UTCHCCK	PROJECT NO.: Q4430.01-122-34	CKD: ARK	SHEET: 38 OF 41

Hex & Hex Washer Heads

SELF- TAPPING SCREWS HEAD DIMENSIONS

HEX	& He	x Was	SHER HE	ADS FO	DR SEL	F-TAPP	PING &	SELF-I	DRILLIN	G SCR	EWS	ASME E	18.6.3- 2013
	A Width Across Flats		w		н		F		U		J		r 📝
Nominal Size			Width Across Corners	Height of Head		Diameter of Washer		Thickness of Washer		Width of Slot		Depth of Slot	
	Max	Min	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min
4	.188	.181	.202	.060	.049	.243	.225	.019	.011	.039	.031	.036	.025
6	.250	.244	.272	.093	.080	.328	.302	.025	.015	.048	.039	.046	.033
7	.250	.244	.272	.093	.080	.328	.302	.029	.017	.048	.039	.054	.040
8	.250	.244	.272	.110	.096	.348	.322	.031	.019	.054	.045	.066	.052
10	.312	.305	.340	.120	.105	.414	.384	.031	.019	.060	.050	.072	.057
12	.312	.305	.340	.155	.139	.432	.398	.039	.022	.067	.056	.093	.077
14	.375	.367	.409	.190	.172	.520	.480	.050	.030	.075	.064	.101	.083
1/4 (standard)	.375	.367	.409	.190	.172	.520	.480	.050	.030	.075	.064	.101	.083
1/4 (special)	.438	.428	.484	.188	.150	.618	.574	.055	.030	.084	.072	.110	.090
5/16 (special)	.438	.428	.484	.230	.172	.676	.574	.063	.040	.084	.072	.122	.090
5/16 (standard)	.500	.489	.545	.230	.208	.676	.624	.055	.035	.084	.072	.122	.100
3/8	.562	.551	.614	.295	.270	.780	.720	.063	.037	.094	.081	.156	.131
1/2*	.750	.735	.820	.400	.367	1.040	.960	.085	.050	.106	.091	.190	.165

* Slot dimentions for 1/2-inch diameter hex washer head tapping screws are independient of ASME B18.6.3

BY: TAD **DATE:** 08/31/23

PROJECT NO.: Q4430.01-122-34

CKD: ARK **SHEET:** 39 OF 41

Tap &	Clearar	nce Dri	ll Sizes		Тар	Drill			Clearar	nce Drill	
Screw Size	Major Diameter	Threads Per Inch	Minor Diameter	75% Thi Aluminum Plas	read for 1, Brass, & stics	50% Thr Steel, Si & I	read for tainless, ron	Close	e Fit	Free	e Fit
0	0(00	00	0.4.7	Drill Size	Dec. Eq.	Drill Size	Dec. Eq.	Drill Size	Dec. Eq.	Drill Size	Dec. Eq.
0	.0600	80	.0447	3/64	.0469	55	.0520	52	.0635	50	.0700
1	.0730	04 72	.0538	53	.0595	1/10	.0625	48	.0760	46	.0810
		7Z 54	.0500	50	.0395	32	.0035				
2	.0860	50	.0041	50	.0700	47	.0730	43	.0890	41	.0960
		48	0734	47	0785	40	0860				
3	.0990	-10	.0734	45	.0/83	43	.0890	37	.1040	35	.1100
		40	0813	43	0890	41	0960				
4	.1120	48	.0864	42	.0935	40	.0980	32	.1160	30	.1285
		40	.0943	38	.1015	7/64	.1094				
5	.125	44	.0971	37	.1040	35	.1100	30	.1285	29	.1360
,	420	32	.0997	36	.1065	32	.1160			25	4.405
0	.138	40	.1073	33	.1130	31	.1200	27	.1440	25	.1495
0	16.40	32	.1257	29	.1360	27	.1440	40	1405	44	1770
0	.1040	36	.1299	29	.1360	26	.1470	10	.1095	10	.1//0
10	1000	24	.1389	25	.1495	20	.1610	0	1060	7	2010
10	. 1900	32	.1517	21	.1590	18	.1695	2	.1900		.2010
		24	.1649	16	.1770	12	.1890				
12	.2160	28	.1722	14	.1820	10	.1935	2	.2210	1	.2280
		32	.1777	13	.1850	9	.1960				
		20	.1887	7	.2010	7/32	.2188				
1/4	.2500	28	.2062	3	.2130	1	.2280	F	.2570	н	.2660
		32	.2117	7/32	.2188	1	.2280				
		18	.2443	F	.2570	J	.2770				
5/16	.3125	24	.2614		.2720	9/32	.2812	Р	.3230	Q	.3320
		32	.2742	9/32	.2812	L	.2900				
2/9	2750	16	.2983	5/16	.3125	Q	.3320	w	2940	~	2070
3/8	.3/50	24	.3239	Q	.3320	5	.3480	w	.3860	×	.3970
		32	.3307	11/32	.3430	25/64	.3000				
7/16	4375	20	3762	25/64	3006	13/32	.3900	20/64	4531	15/32	4687
1110	575	20	3037	23/04 V	4040	7	4130	2//04	.4351	13/ 32	.4007
		13	4056	27/64	4219	29/64	4531				
1/2	5000	20	4387	29/64	4531	15/32	4688	33/64	5156	17/32	5312
		28	.4562	15/32	.4688	15/32	.4688	33704	.5150	177.52	
		12	.4603	31/64	.4844	33/64	.5156				
9/16	.5625	18	.4943	33/64	.5156	17/32	.5312	37/64	.5781	19/32	.5938
		24	.5114	33/64	.5156	17/32	.5312				
		11	.5135	17/32	.5312	9/16	.5625				
5/8	.6250	18	.5568	37/64	.5781	19/32	.5938	41/64	.6406	21/32	.6562
		24	.5739	37/64	.5781	19/32	.5938				
11/16	.6875	24	.6364	41/64	.6406	21/32	.6562	45/64	.7031	23/32	.7188
		10	.6273	21/32	.6562	11/16	.6875				
3/4	.7500	16	.6733	11/16	.6875	45/64	.7031	49/64	.7656	25/32	.7812
		20	.6887	45/64	.7031	23/32	.7188				
13/16	.8125	20	.7512	49/64	.7656	25/32	.7812	53/64	.8281	27/32	.8438
		9	.7387	49/64	.7656	51/64	.7969				
7/8	.8750	14	.7874	13/16	.8125	53/64	.8281	57/64	.8906	29/32	.9062
		20	.8137	53/64	.8281	27/32	.8438				0.100
15/16	.9375	20	.8762	57/64	.8906	29/32	.9062	61/64	.9531	31/32	.9688
	4.000	8	.8466	//8	.8/50	59/64	.9219		4.0454	4.4.00	4.0242
1	1.000	12	.8978	15/16	.9375	61/64	.9531	1-1/64	1.0156	1-1/32	1.0313
		20	.9387	61/64	.9531	31/32	.9688				

intertek	PROJECT: QUAKER M600 Casement Windows	BY: TAD	DATE: 08/31/23
	PROJECT NO.: Q4430.01-122-34	CKD: ARK	SHEET: 40 OF 41

KWIK-CON II+ Concrete and Masonry Screw

MATERIAL SPECIFICATIONS

Carbon steel expansion sleeves and spacer sleeves are manufactured from cold rolled steel.	
Carbon steel anchors are zinc plated in accordance with ASTM B633, SC 1, Type III.	
Stainless steel anchor components are manufactured from AISI Type 304 stainless steel.	

MATERIAL SPECIFICATIONS

Carbon Steel with KWIK Cote ¹	 Screws manufactured from 1018 to 1022 cold rolled steel case hardened to HRC 45 minimum Minimum tensile strength and yield strength for the 1/4-in. is 138 ksi and 137 ksi, respectively Minimum tensile strength and yield strength for the 3/16-in. is 138 ksi and 137 ksi, respectively 		
KWIK Cote corrosion resistant coating	 KWIK Cote is a zinc-rich basecoat with an aluminum-rich topcoat. 		
AISI Type 410 stainless steel1	Screws manufactured from AISI Type 410 stainless steel. Minimum tensile strength and yield strength for the 1/4-in. is 184ksi and 157 ksi, respectively Minimum tensile strength and yield strength for the 3/16-in. is 194 ksi and 170 ksi, respectively		
Head Styles	Tapered flat head with #3 Phillips recess for 3/16- and 1/4-in. anchors Tapered flat head with T-25 TORX recess for 3/16-in. anchor Tapered flat head with T-27 TORX recess for 1/4-in. anchor 5/16-in. hex washer with internal T-25 TORX recess for 3/16- and 1/4-in. anchors		
Head diameter	 Maximum 0.507 in. for 3/16- and 1/4-in. tapered Phillips flat head and 1/4-in. tapered T-27 TORX flat head anchors Maximum 0.385 in. for 3/16-in. tapered T-25 TORX flat head anchor Maximum 0.432 in. maximum for 3/16- and 1/4-in. T-25 TORX hex washer head anchors 		
Thread diameter	Nominal 3/16-in., Major dia. is 0.217 inches, Minor2 is 0.145 inches		
Shank diameter	 Nominal 3/16-in. is 0.170 inches Nominal 1/4-in. is 0.224 inches 		
Lengths (in.)	- 1-1/4, 1-3/4, 2-1/4, 2-3/4, 3-1/4, 3-3/4, 4 (See ordering information section)		
Thread design	ign - Trilobular, cold formed.		
Threads per inch	 Nominal 3/16-in. have 8 tpi. Nominal 1/4-in. have 8 tpi. Inches of thread per fastener 1.875 inches maximum 		
Bending capacity	Ductility at 10° minimum		

1 Minimum tensile and yield strength are the average of strength measurement of (30) tested samples. These are not minimum steel properties or minimum manufacturing specifications. 2 Minor diameter is the average measurement taken from (30) samples. This is not a controlled dimension.

intertek	PROJECT: QUAKER M600 Casement Windows	BY: TAD	DATE: 08/31/23
	PROJECT NO.: Q4430.01-122-34	CKD: ARK	SHEET: 41 OF 41

Revision Log

<u>Rev. #</u>	Date	Page(s)	Revision(s)
0	08/31/23	N/A	Original report issue