intertek	PROJECT: Installation Calcs – M600 AWNING	BY: TAD	DATE: 10/12/23
UICALCAK	PROJECT NO.: Q6341.01-122-34	CKD: ARK	SHEET: 1 OF 25

Window Installation Analysis

QUAKER WINDOWS & DOORS M600 Awning

Report Q6341.01-122-34

Rendered to:

QUAKER WINDOWS & DOORS P.O. Box 128 504 Highway 63 South Freeburg, Missouri 65035

Prepared by:

Tanya A. Dolby, P.E. Adam R. Kunkel

Architectural Testing, Inc. 130 Derry Court York, Pennsylvania 17406 (717) 764-7700 Florida COA: 29274

October 12, 2023

Tanya A. Dolby, P.E. Manager, Engineering Services Adam R. Kunkel Project Engineer

<u>Scope</u>

Architectural Testing, Inc., an Intertek company, was contracted by Quaker Windows & Doors to evaluate alternate installation methods for their M600 Awning windows. The evaluation is based on physical testing and product certifications.

Reference standards utilized in this project include:

Florida Building Code, Building, 8th Edition (2023). International Code Council, 2023.

ANSI/AWC NDS-2018 National Design Specification (NDS) for Wood Construction with 2015 Supplement. American Wood Council, 2018.

ADM1-2020 Aluminum Design Manual. The Aluminum Association, Inc., 2020.

AISI S100-16(2020)w/S2-20 North American Specification for the Design of Cold-Formed Steel Structural Members, 2016 Edition(Reaffirmed 2020). American Iron and Steel Institute, 2020.

ICC-ES Report ESR-1976 ITW Buildex TEKS Self-Drilling Fasteners. ICC Evaluation Service. 07/2023.

NOA 21-0628.20 *Hilti Kwik-Con+ Concrete and Masonry Screw Anchor.* Miami-Dade County Product Control Section. 08/19/2021.

The anchorage analyses presented herein do not address the water resistance, water penetration or air infiltration performance of the installation method or the installed product. In addition, the analyses rely on the assumption that the building substrate is capable of withstanding incurred loads.

Certification of Independence

In accordance with Rule 61G20-3 Florida Administrative Code, Architectural Testing, Inc. hereby certifies the following:

- Architectural Testing does not have, nor does it intend to acquire or will it acquire, a financial interest in any company manufacturing or distributing products tested or labeled by the agency.
- Architectural Testing is not owned, operated or controlled by any company manufacturing or distributing products it tests or labels.
- Tanya A. Dolby, P.E. and Adam R. Kunkel do not have nor will acquire, a financial interest in any company manufacturing or distributing products for which the reports are being issued.
- Tanya A. Dolby, P.E. and Adam R. Kunkel do not have, nor will acquire, a financial interest in any other entity involved in the approval process of the product.

Analyses

Summary of Test Results

The following table summarizes the M600 Awning Window products and their corresponding performance levels which have been established by testing or product certification.

Series/Model	Test Report Number	Product Certification	Size (W x H)	Performance
M600 Awning Window	H0890.01-801-47 (Revision -, 06/06/17)	NI013805-R1	36" x 84"	+/- 70 psf
M600 Awning Window	G3077.01-801-47 (Revision 1, 04/06/18)	NI013438-R2	60" x 36"	+/- 70 psf
M600 Awning Window	G3076.01-801-47 (Revision -, 11/21/16)	NI013438.01-R1	48" x 72"	+/- 70 psf

Table 1 Summary of Test Results

H0890.01-801-47, G3077.01-801-47, G3076.01-801-47 testing was conducted by the Architectural Testing laboratory in Plano, Texas (Florida Department of Business & Professional Regulation Test Lab No. TST1910, IAS Accredited Laboratory TL-331).

As-Tested Installation Analysis

For air/water/structural testing, the test specimen was secured to a 2x Spruce-Pine-Fir wood buck with nailing fins using $#6 \times 1-5/8$ " wood screws. The as-tested installation method is evaluated on page 7 and the established design capacities are summarized in Table 2.

Table 2 As-Tested Anchorage Design Capacity

Test	Connection	Capacity
M600 Awning with Window Air/Water/Structural Test	#6 x 1-5/8" Wood Screw Through Nail Fin Placed 2" from each corner and 12" on center	75 lb

The capacity presented in Table 2 will be used to prove acceptable alternate anchors and substrates for the windows.

Alternate Anchorages

Calculations on page 8 through page 14 determine the design capacity of alternate anchorages for the windows. The alternate anchorage capacities are summarized in Table 3 and Table 4.

Installation	Connection	Capacity	Comments
Wood	#12 Wood Screw connecting Nailing Fin to Wood Blocking	118 lb	 Limited by pull-over 1-1/2" min penetration Min Wood blocking, G = 0.55
18 Gauge Steel Stud	#10-16 TEKS Screw connecting Nailing Fin to Light Gauge Steel Framing	116 lb	 Limited by pull-out Full penetration +3 threads Min 18 gauge 33 KSI steel

Table 3 Alternate Anchorage Capacities – Nail F	in
---	----

Table 4 Alternate Anchorage Capacities - Strap Anchor

Substrate	Anchor	Capacity	Comments
			1. Limited by Shear
	#4.2 ··· 2. 4 /2# \M/a a d Caravi	102 11-	2. 1-1/4" Minimum Penetration
vvood	#12 X 2-1/2 Wood Screw	193 10	3. 1/4" Maximum Shim Space
			4. Min Wood blocking, G = 0.55
			1. Limited by Tilting
18 Gauge		200 11-	2. Minimum 18 gauge 33 KSI Steel
Steel Stud	#12-14 TEKS Screw	306 Ib	3. Full penetration +3 threads
			4. 1/4" Maximum Shim Space
	1/4" Hilti Kwik Con II+	379 lb	1. Limited by shear capacity
			2. Minimum f' _c = 3,000 psi
Concrete			3. 1" Minimum Embedment
			4. 2-1/2" Min. Edge Distance
			5. 1/4" Maximum Shim Space
			1. Limited by shear capacity
			2. Minimum ASTM C90 CMU
CMU	1/4" Hilti Kwik Con II+	251 lb	3. 1" Minimum Embedment
			4. 2-1/2" Min. Edge Distance
			5. 1/4" Maximum Shim Space

Anchorage Requirements

The capacities of the alternate anchorages exceed the capacity of the as-tested anchorage. The as tested spacings of 2" from each corner and 12" maximum on center for each anchoring system shall apply to alternate substrates.

Reference Drawings

The reference drawings are the basis of the analysis presented herein and may not reflect the requirements established by this analysis.

 M600 Awning Installation Instructions. Sheets 1 - 6. Quaker Windows and Doors. 09/21/23. (6 pages)

As-Tested Installation – Nailing Fin to Wood Blocking

#6 x 1-5/8" Wood Screw

0.062" thick 6063-T6 Aluminum Nailing Fin

Spruce-Pine-Fir 2x Wood Substrate Minimum (G=0.55)

<u>Allowable Tension of #6 x 1-5/8" Wood Screw</u> W = 1.6(1.625"-0.062")(69 lb/in) (NDS, Table 11.2B) W = 173 lb

 $\begin{array}{l} \underline{Pull-Over \ of \ \#6 \ x \ 1-5/8'' \ Wood \ Screw}} \\ P_{nov} = C_{pov} t_1 F_{tu1} (D_{ws} - D_h)/3.0 \\ P_{nov} = 1.0(0.0625'')(30,000 \ psi)(0.270'' - 0.1495'')/3.0 \\ P_{nov} = 75 \ lb \end{array}$

Alternate Installation – Nailing Fin to Wood Blocking

- #12 Pan Head Wood Screw
- 1-1/2" Minimum Penetration
- 1/16" thick 6063-T6 Aluminum Nailing Fin
- G = 0.55 Minimum SYP 2x Wood Blocking
- ¼" maximum shim space

ASD Withdrawal

Withdrawal of #12 PH Wood Screw

W' = 2,850(G²)(D)(Cd)(Cm)(Ct)(Ceg)(Ctn)(L) W' = 2,850 (0.55^2)(0.216'')(1.6)(0.7)(0.7)(1.00)(1.0)(1.50'') W' = 219 lb

Adjustment Factors

Load Duration Factor - Ten Minutes, Cd = 1.6 Moisture Factor - Fabrication > 19% and In-Service > 19%, Cm = 0.7 Temperature Factor - $100^{\circ}F < T \le 125^{\circ}F$, Ct = 0.7 End Grain Factor - No, Ceg = 1.00 Toe Nail Factor - No, Ctn = 1.0

Pull-Over of #12 PH Wood Screw

$$\begin{split} P_{nov} &= C_{pov} t_1 F_{tu1} (D_{ws}\text{-}D_h)/3.0 \\ P_{nov} &= 1.0(0.0625")(30,000 \text{ psi})(0.416"-0.228")/3.0 \\ P_{nov} &= 118 \text{ lb} \end{split}$$

Calculated Capacity of Connection is 118 lb

Alternate Installation – Nailing Fin to Steel Stud

#10-16 TEKS Screw

Full Penetration +3 Threads

1/16" thick 6063-T6 Aluminum Nailing Fin

Minimum 18 Gauge 33 KSI Steel Stud (Qualifies thicker and stronger steel)

Allowable Tension of #10-16 TEKS Screw V_a = 885 lb (ESR-1976)

 $\begin{array}{l} \underline{Pull-Over \ of \ \#10-16 \ TEKS \ Screw \ in \ Nail \ Fin}}_{P_{nov} = \ C_{pov} t_1 F_{tu1} (D_{ws} - D_h)/3.0}\\ P_{nov} = \ 1.0(0.0625'')(30,000 \ psi)(0.400'' - 0.201'')/3.0\\ P_{nov} = \ 124 \ lb \end{array}$

 $\frac{\text{Pull-Out of #10-16 TEKS Screw in Steel Stud}}{P_{not} = 0.85t_c dF_{u2}/3.0}$ $P_{not} = 0.85(0.0478")(0.190")(45,000 \text{ psi})/3.0$ $P_{not} = 116 \text{ lb}$

Capacity of Connection is 116 lb

Alternate Installation – Strap Anchor to Wood

#12 x 2-1/2" Wood Screw

0.078" thick 6063-T6 Aluminum Strap Anchor

1/4" Maximum Shim Space

Wood Substrate Minimum (G=0.55)

<u>Allowable Shear of #12 x 2-1/2" Wood Screw</u> Z' = 193 lb (Limited by Mode III, See Following Page)

Bearing of #12 x 2-1/2" Wood Screw on Strap Anchor $V_a = 2DtF_u/n_u$ $V_a = 2(0.216")(0.078")(30,000 \text{ psi})/3.0$ $V_a = 337 \text{ lb}$

 $\begin{array}{l} \underline{\text{Bending of #12 x 2-1/2" Wood Screw}} \\ L = 1/4" (maximum shim space) \\ S = \pi d^3/32 = \pi (0.216")^3/32 = 0.001 \text{ in}^3 \\ F_b = (1.3)(0.6F_y) = (1.3)(0.6)(80,000 \text{ psi}) = 62,400 \text{ psi} (1.3 \text{ factor for weak axis bending}) \\ F_b = M/S = (VL/2)/S (L/2 \text{ for guided bending}) \\ V = 2SF_b/L = (2)(0.001 \text{ in}^3)(62,400 \text{ psi})/0.25" = 500 \text{ lb} \end{array}$

Capacity of Connection is 193 lb

Alternate Installation - Strap Anchor to Wood Blocking (continued)

Lateral Design Strength of Wood Connections

ANSI / AF&PA NDS-2018

Data

Calculations

Lateral Bearing Factors			
D	=	0.171 in.	
ピm	=	1.500 in.	
K _θ	=	1.25	(Т
K _D	=	2.21	(Т
R _e	=	0.089	(Т
R _t	=	24.00	(Т
k ₁	=	0.8662	(Т
k ₂	=	0.5564	(Т
k3	=	15.53	(Т

Yield Mode	R _d	
l _m , I _s	2.21	
I	2.21	
III _m , III _s , IV	2.21	

(Table 12.3.1B) (Table 12.3.1B) (Table 12.3.1A) (Table 12.3.1A) (Table 12.3.1A) (Table 12.3.1A) (Table 12.3.1A)

(Table	12.3.1B)
(Table	12.3.1B)
(Table	12.3.1B)

Lateral Design Values, Z				
Mode I _m	=	389 lbf		(Eq 12.3-1)
Mode I_s	=	181 lbf		(Eq 12.3-2)
Mode II	=	157 lbf		(Eq 12.3-3)
Mode III _m	=	184 lbf		(Eq 12.3-4)
Mode III _s	=	120 lbf	<==== Min Value	(Eq 12.3-5)
Mode IV	=	169 lbf		(Eq 12.3-6)
C _D	=	1.6		(B.2)
١	Vet Se	ervice Factor		
Fabrication/In-Se	rvice	Dry/Dry		
C _M	=	1.0		(Table 11.3.3)
In service tempera	ature	Т	≤100°F	
Ct	=	1.0		(Table 11.3.4)
Cg	=	1.0		(11.3.6)
C_{Δ}	=	1.0		(12.5.1)
Installed in end gr	ain?	No		
C_{eg}	=	1.00		(12.5.2)
Part of a diaphra	agm?	No		
C _{di}	=	1.0		(12.5.3)
Toe-na	iled?	No		
C _{tn}	=	1.00		(12.5.4)
Z'	=	<u>193 lbf</u>		(Table 11.3.1)

Material	=	6063 Te	Aluminum
G	=	N/A	
θ	=	0	<= (Angle of load to grain)
F_{es}	=	37,500 psi	
Thickness	=	0.063 in.	

Alternate Installation – Strap Anchor to Steel Stud

#12-14 TEKS Screw

Full Penetration +3 Threads

0.078" thick 6063-T6 Aluminum Strap Anchor

Minimum 18 Gauge 33 KSI Steel Stud (Qualifies thicker and stronger steel)

1/4" Maximum Shim Space

Allowable Shear of #12-14 TEKS Screw V_a = 724 lb (ESR-1976)

Bearing of #12-14 TEKS Screw on Trim Clip

V_a = 2DtF_u/n_u V_a = 2(0.216")(0.078")(30,000 psi)/3.0 V_a = 337 lb

 $\frac{\text{Bearing of #12-14 TEKS Screw on Steel Stud}}{V_a = 2.7 \text{DtF}_u/n_u}$ $V_a = 2.7(0.216")(0.0478")(45,000 \text{ psi})/3.0$ $V_a = 418 \text{ lb}$

 $\frac{\text{Tilting of #12-14 TEKS Screw in Steel}}{V_a = 4.2(t_2{}^3\text{D}){}^{1/2}\text{F}_{tu}/\text{n}_s}$ $V_a = 4.2(0.0478{}^3 \text{ x } 0.216){}^{1/2}(45,000 \text{ psi})/3.0$ $V_a = 306 \text{ lb}$

 $\begin{array}{l} \underline{\text{Bending of #12-14 TEKS Screw}} \\ L = 1/4" (Maximum Shim Space) \\ S = \pi d^3/32 = \pi (0.216")^3/32 = 0.001 \text{ in}^3 \\ F_b = (1.3)(0.6F_v) = (1.3)(0.6)(92,000 \text{ psi}) = 71,760 \text{ psi} (1.3 \text{ factor for weak axis bending}) \\ F_b = M/S = (VL/2)/S (L/2 \text{ for guided bending}) \\ V = 2SF_b/L = (2)(0.001 \text{ in}^3)(71,760 \text{ psi})/0.25" = 574 \text{ lb} \end{array}$

Capacity of Connection is 306 lb

Alternate Installation – Strap Anchor to Concrete

1/4" Hilti Kwik-Con+ Anchor

- 1" Minimum Embedment
- 2-1/2" Minimum Edge Distance
- 2" Minimum Spacing

0.078" thick 6063-T6 Aluminum Strap Anchor

Minimum f'_c = 3,000 psi Concrete

1/4" Maximum Shim Space

Allowable Shear of 1/4" Hilti Kwik-Con+ $P_{ss}/\Omega = 379$ lb (NOA-No. 21-0628.20)

Bearing of 1/4" Hilti Kwik-Con+ in Strap Anchor

V_a = 2DtF_u/n_u V_a = 2(0.25")(0.078")(30,000 psi)/3.0 V_a = 390 lb

Bending of 1/4" Hilti Kwik-Con+

$$\begin{split} & L = 1/4'' \text{ (Maximum Shim Space)} \\ & S = \pi d^3/32 = \pi (0.224'')^3/32 = 0.0011 \text{ in}^3 \\ & F_b = (1.3)(0.6F_y) = (1.3)(0.6)(137,000 \text{ psi}) = 106,860 \text{ psi} (1.3 \text{ factor for weak axis bending)} \\ & F_b = M/S = (VL/2)/S \text{ (L/2 for guided bending)} \\ & V = 2SF_b/L = (2)(0.0011 \text{ in}^3)(106,860 \text{ psi})/0.25'' = 940 \text{ lb} \end{split}$$

Capacity of Connection is 379 lb

Alternate Installation – Strap Anchor to CMU

1/4" Hilti Kwik-Con+ Anchor

- 1" Minimum Embedment
- 2-1/2" Minimum Edge Distance
- 3" Minimum Spacing
- 0.078" thick 6063-T6 Aluminum Strap Anchor

Minimum f'm = 1,500 psi ASTM C90 Concrete Masonry

1/4" Maximum Shim Space

 $\frac{\text{Allowable Shear of } 1/4" \text{ Hilti Kwik-Con+ Anchor}}{P_{ss}/\Omega = 251 \text{ lb}} (NOA-No. 21-0628.20)}$

Bearing of 1/4" Hilti Kwik-Con+ in Strap Anchor

V_a = 2DtF_u/n_u V_a = 2(0.25")(0.078")(30,000 psi)/3.0 V_a = 390 lb

Bending of 1/4" Hilti Kwik-Con+

$$\begin{split} & L = 1/4'' \text{ (Maximum Shim Space)} \\ & S = \pi d^3/32 = \pi (0.224'')^3/32 = 0.0011 \text{ in}^3 \\ & F_b = (1.3)(0.6F_y) = (1.3)(0.6)(137,000 \text{ psi}) = 106,860 \text{ psi} (1.3 \text{ factor for weak axis bending)} \\ & F_b = M/S = (VL/2)/S \text{ (L/2 for guided bending)} \\ & V = 2SF_b/L = (2)(0.0011 \text{ in}^3)(106,860 \text{ psi})/0.25'' = 940 \text{ lb} \end{split}$$

Capacity of Connection is 251 lb

GLASS ANALYSIS

36" x 84" Window

Glazing Information

Supported Edges:	Four sides simply supported
Shape:	Rectangular
Lite Width:	31.0 in.
Lite Height:	78.8 in.
Glazing Angle:	90.0 °

Glazing Construction (Double Glazed Insulating Unit)

Exterior Lite Properties (Monolithic 1/4 in.)

Single Glass Ply Properties RCSS (Heat Treatment): Min Thickness: Surface Treatment:

0.00 psi (Annealed) 0.219 in. None Surface Parameters: 7.00 [1.36e-29 in^12/lbf^7] (ASTM)

Airspace Properties

Thickness:	0.480 in.		
Sealant Width:	0.236 in.		
Elevation:	0.00 ft		
Initial Pressure:	14.70 psi		
Initial Temperature:70.0 °F			

Interior Lite Properties (Monolithic 1/4 in.)

Single Glass Ply Properties
RCSS (Heat Treatment):
Min Thickness:
Surface Treatment:
Surface Parameters:

0.00 psi (Annealed) 0.219 in. None 7.00 [1.36e-29 in^12/lbf^7] (ASTM)

Load Combinations

Load Combination 1 - 70.0 psf (3.00 sec)				
Description	<u>Load</u>	Duration	Factor	<u>Total</u>
Short Duration	70.0 psf	3.00 sec	1.00	70.0 psf

Scenarios

Scenario 1

Load Combination 1 acting on Exterior Lite	70.0 psf (3.00 sec)
Elevation (Atmospheric Pressure):	0.00 ft (14.6 psi)
Air Space 1 Temperature:	70.0 °F

intertals PR	PROJECT: Installation Calcs – M600 AWNING	BY: TAD	DATE: 10/12/23
ncercek	PROJECT NO.: Q6341.01-122-34	CKD: ARK	SHEET: 16 OF 25

Details

Selected standard: ASTM E1300 Extended Basic

Glazing Construction (Double Glazed Insulating Unit)

Exterior Lite Properties (1/4 in. Monolithic)

Construction: 1/4 in. (AN)

Airspace Properties

Thickness: 0.480 in.

Interior Lite Properties (1/4 in. Monolithic)

Construction: 1/4 in. (AN)

Load Resistance

Short Duration (3 Sec)

Description	NFL	GTF	LSF	LR
Exterior Lite	48.3 psf	0.900	1/0.500	87.0 psf
Interior Lite	48.3 psf	0.900	1/0.500	87.0 psf

Comparisons

Scenario 1		
70.0 psf 3.00 sec <= 87.0 psf	OK	
Approximate center of glass deflection		
Exterior Lite	0.27 in.	
Interior Lite	0.27 in.	

lotes

Load resistance values are computed in accordance with ASTM E1300-16 Section 6.2 and are based on non-factored load values calculated in a manner consistent with those presented in ASTM E1300-16. PROJECT NO.: Q6341.01-122-34

60" x 36" Window

Glazing Information

Supported Edges:
Shape:
Lite Width:
Lite Height:
Glazing Angle:

Four sides simply supported Rectangular 55.0 in. 31.0 in. 90.0 °

Glazing Construction (Double Glazed Insulating Unit)

Exterior Lite Properties (Monolithic 1/4 in.)

Single Glass Ply Properties RCSS (Heat Treatment): Min Thickness: Surface Treatment: Surface Parameters:

0.00 psi (Annealed) 0.219 in. None 7.00 [1.36e-29 in^12/lbf^7] (ASTM)

Airspace Properties

Thickness:	0.480 in.
Sealant Width:	0.236 in.
Elevation:	0.00 ft
Initial Pressure:	14.70 psi
Initial Temperatu	re:70.0 °F

Interior Lite Properties (Monolithic 1/4 in.)

Single Glass Ply Properties RCSS (Heat Treatment): Min Thickness: Surface Treatment: Surface Parameters:

0.00 psi (Annealed) 0.219 in. None 7.00 [1.36e-29 in^12/lbf^7] (ASTM)

Load Combinations

Load Combination 1 - 70.0 psf (3.00 sec)					
<u>Description</u>	<u>Load</u>	Duration	Factor	<u>Total</u>	
Short Duration	70.0 psf	3.00 sec	1.00	70.0 psf	

Scenarios

Scenario 1

Load Combination 1 acting on Exterior Lite Elevation (Atmospheric Pressure): Air Space 1 Temperature: 70.0 psf (3.00 sec) 0.00 ft (14.6 psi) 70.0 °F

Details

Selected standard: ASTM E1300 Extended Basic

Glazing Construction (Double Glazed Insulating Unit)

Exterior Lite Properties (1/4 in. Monolithic)

Construction: 1/4 in. (AN)

Airspace Properties

Thickness: 0.480 in.

Interior Lite Properties (1/4 in. Monolithic)

Construction: 1/4 in. (AN)

Load Resistance

Short Duration (3 Sec)

Description	<u>NFL</u>	<u>GTF</u>	<u>LSF</u>	<u>LR</u>
Exterior Lite	68.3 psf	0.900	1/0.500	123 psf
Interior Lite	68.3 psf	0.900	1/0.500	123 psf

Comparisons

Scenario 1	
70.0 psf 3.00 sec <= 123 psf	OK
Approximate center of glass deflection	
Exterior Lite	0.20 in.
Interior Lite	0.20 in.

Notes

Load resistance values are computed in accordance with ASTM E1300-16 Section 6.2 and are based on non-factored load values calculated in a manner consistent with those presented in ASTM E1300-16.

48" x 72" Window

Glazing Information

Supported Edges: Shape: Lite Width: Lite Height: Glazing Angle: Four sides simply supported Rectangular 43.0 in. 67.0 in. 90.0 °

Glazing Construction (Double Glazed Insulating Unit)

Exterior Lite Properties (Monolithic 1/4 in.)

Single Glass Ply Properties RCSS (Heat Treatment): Min Thickness: Surface Treatment: Surface Parameters:

0.00 psi (Annealed) 0.219 in. None 7.00 [1.36e-29 in^12/lbf^7] (ASTM)

Airspace Properties

Thickness:	0.480 in.
Sealant Width:	0.236 in.
Elevation:	0.00 ft
Initial Pressure:	14.70 psi
Initial Temperatur	e:70.0 °F

Interior Lite Properties (Monolithic 1/4 in.)

Single Glass Ply Properties RCSS (Heat Treatment): Min Thickness: Surface Treatment: Surface Parameters:

0.00 psi (Annealed) 0.219 in. None 7.00 [1.36e-29 in^12/lbf^7] (ASTM)

Load Combinations

Load Combination 1 - 70.0 psf (3.00 sec)								
Description	<u>Load</u>	Duration	Factor	<u>Total</u>				
Short Duration	70.0 psf	3.00 sec	1.00	70.0 psf				

Scenarios

s	ce	'n	a	ri	0	1		
								_

Load Combination 1 acting on Exterior Lite	70.0 psf (3.00 sec)
Elevation (Atmospheric Pressure):	0.00 ft (14.6 psi)
Air Space 1 Temperature:	70.0 °F

Details

Selected standard: ASTM E1300 Extended Basi

Glazing Construction (Double Glazed Insulating Unit)

Exterior Lite Properties (1/4 in. Monolithic)

Construction: 1/4 in. (AN)

Airspace Properties

Thickness: 0.480 in.

Interior Lite Properties (1/4 in. Monolithic)

Construction: 1/4 in. (AN)

Load Resistance

Short Duration (3 Sec)

Description	NFL	GTF	LSF	LR	
Exterior Lite	47.7 psf	0.900	1/0.500	85.8 psf	
Interior Lite	47.7 psf	0.900	1/0.500	85.8 psf	

Comparisons

Scenario 1		
70.0 psf 3.00 sec <= 85.8 psf	OK	
Approximate center of glass deflection		
Exterior Lite	0.47 in.	
Interior Lite	0.47 in.	

Notes

Load resistance values are computed in accordance with ASTM E1300-16 Section 6.2 and are based on non-factored load values calculated in a manner consistent with those presented in ASTM E1300-16.

PROJECT NO.: Q6341.01-122-34

Hilti Kwik-Con+ Fastening

system for concrete and

Hilti, Inc.

7250 Dallas Parkway

Plano TX 75024

HILTI KWIK-CON +

DESCRIPTION

PRODUCT REVISED as complying with the Florida Building Code NOA-No. 21-0628.20 Expiration Date: 12/12/2024 By: Manuel Setter Manuel Dado Broduct Control

Miami-Dade Product Control

Carbon steel screw anchors have a minimum yield strength of 120 ksi and a minimum tensile strength of 150 ksi. The screw anchors have a zinc coating with a minimum thickness of 8 μ m and are coated with an organic coating to resist corrosion. Three-sixteenths and 1/4-in. carbon steel screw anchors are available in 1-1/4, 1-3/4, 2-1/4, 2-3/4, 3-1/4 3-3/4 and 4 inch lengths.

DESIGN LOADS:

	Car	rbon steel s	crews			
Anchor size	Embedment	Concrete	e 300 psi	C90 Concrete block		
	depth	Tension	Shear	Tension	Shear	
3/16"	1"	112	215	116	150	
3/16"	1-3/4"	217	215	-	-	
1/4"	1"	198	379	122	251	
1/4"	1-3/4"	393	379	-	-	

Kwik-Con+ - Philips flat head

0

GENERAL NOTES

- Design loads for concrete are based on ultimate loads divided by 4. Design loads are for light-weight or normal-weight ASTM C90 block and are based on ultimate loads divided by 5.
- 2. In order to achieve the design load, a minimum edge distance of 1-1/2" for 3/16" ø screw, and 2-1/2" for 1/4" ø screw shall be observed.

 Minimum spacing of anchor shall be 2" in concrete and 3" in concrete blocks in order to acheive the design loads.

- Anchor installation shall be made in accordance with Hilti's published installation instructions in the Product Technical Guide.
- 5. Anchors are restricted from use in cracked concrete as defined in ACI 355.2.

Nominal diameter	Shank diameter (in.)	Thread major (in.)	Diameter root (in.)	
3/16"	0.170	0.217	0.145	
1/4"	0.224	0.283	0.190	

PROJECT NO.: Q6341.01-122-34

TEKS Screw References

TABLE 5—FASTENER STRENGTH OF SCREWS^{1, 2, 3, 4, 5}

SCREW	DIAMETER	ALLOWABLE FAS	TENER STRENGTH	NOMINAL FASTENER STRENGTH		
DESIGNATION	(in.)	Tensile, P _{ts} /Ω (lbf)	Shear, P _{ss} /Ω (lbf)	Tensile, P _{ts} (lbf)	Shear, P _{ss} (lbf)	
10-16	0.190	885	573	2654	1718	
12-14	0.216	1184	724	3551	2171	
12-24	0.216	1583	885	4750	2654	
¹ / ₄ -14	0.250	1605	990	4816	2970	
1/4-28	0.250	1922	1308	5767	3925	

For SI: 1 inch = 25.4 mm, 1 lbf = 4.45 N.

¹For tension connections, the least of the allowable pull-out, pullover, and fastener tension strength found in Tables 2, 3, and 5, respectively, must be used for

design. ²For shear connection, the lower of the allowable shear (bearing) and the allowable fastener shear strength found in Table 4 and 5, respectively, must be used for design.

³See Section 4.1 for fastener spacing and end distance requirements. ⁴Nominal strengths are based on laboratory tests ⁵To calculate LRFD values, multiply nominal strength values by the LRFD Φ factor of 0.5.

TABLE 22.11 (Spaced Threads)

	6063-T6											
Nominal	D					Aluminur	n Thicknes	s (Inches)				
Diameter	Thread	0.038	0.060	0.072	0.080	0.094	0.125	0.156	0.188	0.250	0.312	0.375
Per Inch	(Inch)					Allowab	le Pullout	(Pounds)				
#8-18	0.1640	53	83	100	132	155	235	350	468	669	835	1004
#10-16	0.1900	61	96	116	153	180	239	372	509	775	968	1163
#12-14	0.2160		110	132	174	204	271	374	530	833	1100	1322
1/4-14	0.2500		127	152	201	236	314	433	614	964	1273	1530
5/16-12	0.3125								809	1334	1860	2296
3/8-12	0.3750								971	1601	2232	2755
				6063-T6								
F _U (Tensile	e Ultimate	Strength)		30000	psi			Sł	ading indi	cates trans	sition regio	on.
F _Y (Tensile	e Yield Stre	ngth)		25000	psi							

NOTE 32:

1. Each table lists allowable pull-out (internal threads) values. $S_F = 3.0$ for $D \le 0.25$ "; $S_F = 2.5$ for $D \ge 0.3125$ ". Fastener allowable strength (basic tension and external threads) needs to be checked separately. 2. For pilot hole sizes refer to tables 21.1 to 21.7

Fostener pullout not shown for aluminum thickness less than approximately 2 threads, unless tested at a lesser thickness.
 Multiple fastener connections and embrittlement need to be checked separately.

intertek	PROJECT: Installation Calcs – M600 AWNING	BY: TAD	DATE: 10/12/23
nieriek	PROJECT NO.: Q6341.01-122-34	CKD: ARK	SHEET: 23 OF 25

<u>Appendix</u>

Pan Head w/ Phillips Recess

WOOD SCREWS

Nominal Diameter & Threads per Inch	A Head Diameter		H Head Height		R Recess Penetration Depth		M Recess Diameter	D Major Diameter		T Threaded Length		Torque Kg/cm (Steel screws)	Recess Size
	6-13	0.270	0.256	0.097	0.087	0.080	0.055	0.159	0.142	0.131	Full thread	2/3 thread	21
7-12	0.296	0.281	0.106	0.096	0.089	0.064	0.170	0.158	0.147	Full thread	2/3 thread	28	#2
8-11	0.322	0.306	0.115	0.105	0.097	0.071	0.175	0.169	0.159	Full thread	2/3 thread	37	#2
10-9	0.373	0.357	0.133	0.122	0.113	0.089	0.192	0.194	0.185	Full thread	2/3 thread	55	#2
12-8	0.425	0.407	0.151	0.139	0.124	0.098	0.252	0.230	0.213	Full thread	2/3 thread	64	#3
Tolerance on Length			Up to 5/8"							± 0.03			
		Over 5/8 to 1.5"							± 0.05			<u> </u>	
		Over 1.5 to 2.75*							± 0.06				
		Over 2.75"					± 0.09						

Description	An externally threaded fastener with a dome-shaped head, cross recess and a single lead thread. The shank has a reduced diameter and a chip cavity cut out where the final several threads end at the tip.							
Applications / Advantages	The deeper thread design offers greater resistance to pull-out forces. Popular in fastening cabinet hardware in locations that do not require the head to countersink. The chip cavity (or auger point) are designed to attach hinges to the edge of hardwood face frames.	Used in environments where corrossion resistance is neccesary. The type-17 point enables the screw to more easily penetrate the material into which it's fastened. Can be used in particle board, wood and some plastics.						
Material	C1018 - 1022 case-hardened steel	18-8 Stainless Steel						
Surface Hardness	Vickers 450 HV minimum							
Case Depth	0.004" - 0.009"							
Torque	See values in above table	-						
Plating	See Appendix-A for plating information	Stainless deep thread screws are usually supplied without additional finish.						

PROJECT NO.: Q6341.01-122-34

BY: TAD **DATE:** 10/12/23

CKD: ARK **SHEET:** 24 OF 25

Tap & Clearance Drill Sizes Tap Drill						Drill		Clearance Drill			
				75% Th	read for	50% Thr	read for				
Screw	Major	Threads	Minor	Aluminum, Brass, &		Steel, Stainless,		Close	e Fit	Free	e Fit
Size	Size Diameter		Diameter	Plas Drill Size	Dec Fo	tt I Drill Circo	ron	Drill Cizo	Dec. Fe	Drill Cizo	Dec. Ec.
0	0600	80	0447	3/64	0469	55	0520	52	0635	50	0700
	.0000	64	.0538	53	.0595	1/16	.0625	48	.0055	46	.0810
1	.0730	72	.0560	53	.0595	52	.0635		.0760		
	00/0	56	.0641	50	.0700	49	.0730	43	.0890		
2	.0860	64	.0668	50	.0700	48	.0760			41	.0960
3	0000	48	.0734	47	.0785	44	.0860	37	1040	25	1100
3	.0770	56	.0771	45	.0820	43	.0890	37	.1040	33	.1100
4	.1120	40	.0813	43	.0890	41	.0960	32	.1160	30	1285
		48	.0864	42	.0935	40	.0980	32		30	205
5	.125	40	.0943	38	.1015	7/64	.1094	30	.1285	29	.1360
		44	.0971	37	.1040	35	.1100				
6	.138	3Z 40	.0997	30	.1065	32	.1160	27	.1440	25	.1495
		40	1257	20	.1130	27	.1200				
8	.1640	32	.1237	29	.1300	26	.1440	18	.1695	16	.1770
		24	.1389	25	.1495	20	.1610	9	.1960	7	.2010
10	.1900	32	.1517	21	.1590	18	.1695				
		24	.1649	16	.1770	12	.1890				
12	.2160	28	.1722	14	.1820	10	.1935	2	.2210	1	.2280
		32	.1777	13	.1850	9	.1960				
1/4 .2500		20	.1887	7	.2010	7/32	.2188				
	.2500	28	.2062	3	.2130	1	.2280	F	.2570	н	.2660
		32	.2117	7/32	.2188	1	.2280				
	.3125	18	.2443	F	.2570	J	.2770	Р	.3230	Q	.3320
5/16		24	.2614	1	.2720	9/32	.2812				
		32	.2742	9/32	.2812	L	.2900				
2.0	2750	10	.2983	5/16	.3125	Q	.3320	w	2940	x	.3970
3/0	.5750	24	.3239	11/22	2420	э Т	.3400	**	.3000		
		14	3400	11/32	3680	25/64	3906				
7/16	4375	20	.3762	25/64	.3906	13/32	.4062	29/64	.4531	15/32	4687
		28	.3937	Y	.4040	Z	.4130				
		13	.4056	27/64	.4219	29/64	.4531				
1/2	.5000	20	.4387	29/64	.4531	15/32	.4688	33/64	.5156	17/32	.5312
		28	.4562	15/32	.4688	15/32	.4688				
		12	.4603	31/64	.4844	33/64	.5156	37/64	.5781		.5938
9/16	.5625	18	.4943	33/64	.5156	17/32	.5312			19/32	
		24	.5114	33/64	.5156	17/32	.5312				
5.00	.6250	11	.5135	17/32	.5312	9/16	.5625	41/64	.6406	21/32	.6562
5/8		18	.5568	37/64	.5781	19/32	.5938				
44/46	407E	24	.5/39	37/64	.5/81	19/3Z	.5938	4E / 6.4	7024	22/22	7400
11/10	.00/0	10	.0304	41/04	.0400	21/32	4075	43/04	.7031	23/32	./100
3/4	7500	16	6733	11/16	6875	45/64	7031	49/64	.7656	25/32	7812
	.7500	20	.6887	45/64	.7031	23/32	.7188	47/04		25/32	.7612
13/16	.8125	20	.7512	49/64	.7656	25/32	.7812	53/64	.8281	27/32	.8438
	.0123	9	.7387	49/64	.7656	51/64	.7969	33701	.0201	LITTE	
7/8	.8750	14	.7874	13/16	.8125	53/64	.8281	57/64	.8906	29/32	.9062
		20	.8137	53/64	.8281	27/32	.8438				
15/16	.9375	20	.8762	57/64	.8906	29/32	.9062	61/64	.9531	31/32	.9688
		8	.8466	7/8	.8750	59/64	.9219		1.0156	1-1/32	1.0313
1	1.000	12	.8978	15/16	.9375	61/64	.9531	1-1/64			
		20	.9387	61/64	.9531	31/32	.9688				

istatak	PROJECT: Installation Calcs – M600 AWNING	BY: TAD	3Y: TAD DATE: 10/12/23			
nieriek	PROJECT NO.: Q6341.01-122-34	CKD: ARK	SHEET: 25 OF 25			

Revision Log

<u>Rev. #</u>	Date	Page(s)	Revision(s)
0	10/12/23	N/A	Original report issue