intoctok	PROJECT: Installation Calculations – M600 Terrace Door	BY: TAD	DATE: 12/29/23
UICEICER	PROJECT NO.: Q7220.01-122-34-r1	CKD: ARK	SHEET: 1 OF 18

Installation Calculations

M600 Terrace Door

Report Q7220.01-122-34-r1

Rendered to:

QUAKER WINDOWS & DOORS P.O. Box 128 Freeburg, Missouri 65035

Prepared by:

Tanya Dolby, P.E. Adam R. Kunkel

Architectural Testing, Inc. 130 Derry Court York, Pennsylvania 17406 (717) 764-7700 Florida COA: 29274

December 29, 2023

Tanya Dolby, P.E. Manager, Engineering Services FL PE 93536 Adam Kunkel Project Engineer

intertek	PROJECT: Installation Calculations – M600 Terrace Door	BY: TAD DATE: 12/29/23		
	PROJECT NO.: Q7220.01-122-34-r1	CKD: ARK	SHEET: 2 OF 18	

<u>Scope</u>

Architectural Testing, Inc., an Intertek company, was contracted by Quaker Windows & Doors to evaluate alternate installation methods for their M600 Terrace Door. The evaluation is based on physical testing and product certifications.

Reference standards utilized in this project include:

Florida Building Code, Building, 8th Edition (2023). International Code Council, 2023.

ANSI/AWC NDS-2018 National Design Specification (NDS) for Wood Construction with 2018 Supplement. American Wood Council, 2018.

ADM1-2020 Aluminum Design Manual. The Aluminum Association, Inc., 2020.

AISI S100-16(2020) North American Specification for the Design of Cold-Formed Steel Structural Members, 2016 Edition (Reaffirmed 2020). American Iron and Steel Institute, 2020.

ICC-ES Report ESR-1976 ITW Buildex TEKS Self-Drilling Fasteners. ICC Evaluation Service. 01/2023.

NOA 21-0628.20 *Hilti Kwik-Con + Concrete and Masonry Screw Anchor.* Miami-Dade County Product Control Section. 12/12/2019.

The anchorage analyses presented herein do not address the water resistance, water penetration or air infiltration performance of the installation method or the installed product. In addition, the analyses rely on the assumption that the building substrate is capable of withstanding incurred loads.

Certification of Independence

In accordance with Rule 61G20-3 Florida Administrative Code, Architectural Testing, Inc. hereby certifies the following:

- Architectural Testing does not have, nor does it intend to acquire or will it acquire, a financial interest in any company manufacturing or distributing products tested or labeled by the agency.
- Architectural Testing is not owned, operated or controlled by any company manufacturing or distributing products it tests or labels.
- Tanya Dolby, P.E. and Adam Kunkel do not have nor will acquire, a financial interest in any company manufacturing or distributing products for which the reports are being issued.
- Tanya Dolby, P.E. and Adam Kunkel do not have, nor will acquire, a financial interest in any other entity involved in the approval process of the product.

Analyses

Summary of Test Results

The following table summarizes the various M600 Terrace Door products and their corresponding performance levels which have been established by testing or product certification.

Tabl	е 1	Summary	/ of T	est	Resul	ts
Iavi	ст	Juimai	y 01 1	Cοι	nesu	ιs

Series/Model	Test Report Number	Product Certification	Size (W x H)	Performance
M600 Terrace Door (Outswing)	L0767.01-801-44-r2 (Revision -2, 10/04/21) G4421.01-801-44 (Revision -, 04/03/17)	NI014954.04	48" x 96"	+/- 70 psf
M600 Terrace Door (Outswing, Low Profile Sill)	H2188.01-801-44 (Revision -, 09/05/17)	NI013998-R3	48" x 96"	+/- 50 psf
M600 Terrace Door (Inswing)	H6944.01-801-44 (Revision -, 11/21/17)	NI013998.01-R2	48" x 96"	+/- 50 psf

Testing G4421.01-801-44, H6944.01-801-44, and H2188.01-801-44 documented in Table 1 was conducted by the Architectural Testing laboratory in Plano, Texas (Florida Department of Business & Professional Regulation Test Lab No. TST1910, IAS Accredited Laboratory TL-331). Testing L0767.01-801-44-r2 was conducted by Architectural Testing at Quaker Windows and Doors test facility in Freeburg, Missouri (ATI - Florida Department of Business & Professional Regulation Test Lab No. TST1910, IAS Accredited Laboratory TL-331).

As-Tested Installation Analysis

For air/water/structural testing, the test specimen was secured to a 2x Spruce-Pine-Fir buck with #12 x 2-1/2" wood screws through the jamb and head frames. The as-tested installation method is evaluated on page 5 to page 7 and the established design capacity summarized in Table 2.

Test	Connection	Capacity
Air/Water/Structural Test	#12 x 2-1/2" Wood Screw Through Door Frame	
	est Placed 4" to 6" from each corner and 14" to 15" on	
	center	

The capacities presented in Table 2 will be used to prove acceptable alternate anchors and substrates for the door.

Alternate Anchorages

Page 8 through page 10 presents the calculation of alternate through frame installation anchorages for the door. The alternate anchorage capacities are summarized in Table 3.

Substrate	Anchor	Capacity	Comments
			1. Minimum 18 gauge 33 KSI Steel
18 Gauge	H12 14 TEKS Serous	150 lb	2. Full penetration +3 threads
Steel Stud	#12-14 TEKS SCIEW	129.10	3. Limited by bending
			4. 1/4" Maximum Shim Space
			1. Minimum f' _c = 3,000 psi
	3/16" Hilti Kwik Con II+	206 lb	2. 1-3/4" Minimum Embedment
Concrete			3. 1-1/2" Min. Edge Distance
			4. Limited by bending
			5. 1/4" Maximum Shim Space
			1. Minimum ASTM C90 CMU
			2. 1" Minimum Embedment
CMU	3/16" Hilti Kwik Con II+	150 lb	3. 1-1/2" Min. Edge Distance
			4. Limited by shear capacity
			5. 1/4" Maximum Shim Space

Table 3 Alternate An	chorage Capacitie	s for Through Fram	e Installation
	e 1	0	

PROJECT NO.: Q7220.01-122-34-r1

Anchorage Requirements

Although the capacities of the alternate anchorages exceed the capacity of the as-tested anchorage, it must be determined the anchorages are not overloaded for the approved door size and design pressures. Calculations are presented on page 11.

As-tested anchor spacing is acceptable for doors with a design pressure of +/- 50 psf and design pressure of +/- 70 psf.

This analysis covers all hardware and frame members contained within the below listed Installation Instructions:

- M600 Outswing Terrace Door, 11-10-2023
- M600 IS Terrace Door, 11-13-2023
- M600 OS Terrace Door w/ Low Profile Sill, 11-13-2023

Glazing Analysis

Glass analysis output is provided on pages 12 and 13.

As-Tested Installation – Through Frame to Wood

#12 x 2-1/2" Wood Screw

0.094" thick 6063-T6 Aluminum Frame, 2 thicknesses at fastener location

1/4" Maximum Shim Space (1/2" bending span of anchor)

SYP 2x Wood Substrate Minimum (G=0.55)

<u>Allowable Shear of #12 x 2-1/2" Wood Screw</u> Z' = 241 lb (Limited by Mode IIIs, See Following 2 Pages)

 $\frac{\text{Bearing of #12 x 2-1/2" Wood Screw on Frame}}{V_a = 2DtF_u/n_u}$ $V_a = 2(0.216")(0.188")(30,000 \text{ psi})/3.0$ $V_a = 812 \text{ lb}$

 $\frac{\text{Bending of #12 x 2-1/2" Wood Screw}}{L = 1/2"}$ $S = \pi d^{3}/32 = \pi (0.171")^{3}/32 = 0.000491 \text{ in}^{3}$ $F_{b} = (1.3)(0.6F_{y}) = (1.3)(0.6)(80,000 \text{ psi}) = 62,400 \text{ psi} (1.3 \text{ factor for weak axis bending})$ $F_{b} = M/S = (VL/2)/S (L/2 \text{ for guided bending})$ $V = 2SF_{b}/L = (2)(0.000491 \text{ in}^{3})(62,400 \text{ psi})/0.5" = 123 \text{ lb}$

Capacity of Connection is 123 lb

intertek	PROJECT: Installation Calculations – M600 Terrace Door	BY: TAD DATE: 12/29/23		
	PROJECT NO.: Q7220.01-122-34-r1	CKD: ARK	SHEET: 6 OF 18	

As-Tested Installation – Through Frame to Wood (Continued)

Lateral Design Stre	ength	of Wood	l Connections	ANSI / AWC NDS
Data				
Fastener				
Fastener	=	#12 V	Vood Screw	
Shank Dia	=	0.216	in.	
Root Dia.	=	0.171	in.	
F _{yb}	=	80,000	psi	
Fastener length	=	2.500	in.	
Main Meml	ber			
Material	=		SYP	
G	=	0.55		
θ	=	90	<= (Angle of load to grain $0^{\circ} \le \theta \le 90^{\circ}$)	
F _e	=	5,550	psi	Appendix J
Thickness	=	1.500	in.	
Side Memb	er			
Material	=	6063 T	[°] 6 Aluminum	
G	=	N/A		
θ	=	0	<= (Angle of load to grain $0^{\circ} \le \theta \le 90^{\circ}$)	
F _{es}	=	37,500	psi	NDS 2018
Thickness	=	0.063	in.	
Calculations				
Lateral Rea	nring F	actors		
D	=	0.171	in.	
$\ell_{ m m}$	=	1.500	in.	
K _θ	=	1.25		Table 12.3.1B
Kp	=	2.21		Table 12.3.1B
R	=	0.148		Table 12.3.1A
R.	=	23.81		Table 12.3.1A
k.	=	1.4032		Table 12.3.1A
ka s	=	0.5678		Table 12.3 1A
K)		0.0070		14010 12:0:111

intoctok	PROJECT: Installation Calculations – M600 Terrace Door	BY: TAD DATE: 12/29/23		
UICEICER	PROJECT NO.: Q7220.01-122-34-r1	CKD: ARK	SHEET: 7 OF 18	

As-Tested Installation – Through Frame to Wood (Continued)

			_			
Yield Mod	e	R _d				
	I _m , I _s	2.21				Table 12.3.1B
	II	2.21				Table 12.3.1B
III _n	n, III _s , IV	2.21				Table 12.3.1B
			-			
Lateral De	sign Va	lues, Z				
Mode I _m	=	644	lbf			Eq 12.3-1
Mode I _s	=	183	lbf			Eq 12.3-2
Mode II	=	257	lbf			Eq 12.3-3
Mode III _m	=	282	lbf			Eq 12.3-4
Mode III _s	=	150	lbf	<===== Minimum Valu	ie	Eq 12.3-5
Mode IV	=	212	lbf			Eq 12.3-6
C _D	=	1.6				11.3.2
	Wet Serv	vice Factor				
Fabrication/In-	-Service	Dry/Dry				
C _M	=	1.0				Table 11.3.3
In service temp	perature	T	≤100°F			
Ct	=	1.0				Table 11.3.4
$C_{ m g}$	=	1.0				11.3.6
\mathbf{C}_{Δ}	=	1.0				12.5.1
Is fastener installed in end	d grain?	No				
C_{eg}	=	1.00				12.5.2
Is fastener part of a diap	ohragm?	No				
C_{di}	=	1.0				12.5.3
Is fastener toe	-nailed?	No				1
C _{tn}	=	1.00				12.5.4
Z'	=	<u>241</u>	lbf			Table 12.3.1

Alternate Installation – Through Frame to Steel Stud

#12-14 TEKS Screw

0.094" thick 6063-T6 Aluminum Frame, 2 thicknesses at fastener location

1/4" Maximum Shim Space (1/2" bending span of anchor)

18 gauge 33 ksi stud (t = 0.0478", F_u = 45,000 psi)

Allowable Shear of #12-14 TEKS Screw

 $P_{ss}/\Omega = 724 \text{ lb}$ (ESR-1976)

Bearing of #12-14 TEKS Screw on Frame $V_a = 2DtF_u/n_u$ $V_a = 2(0.216")(0.188")(30,000 \text{ psi})/3.0$ $V_a = 812 \text{ lb}$

 $\frac{\text{Bearing of #12-14 TEKS Screw on Steel Stud}}{V_a = 2.7 \text{DtF}_{tu}/\Omega}$ $V_a = 2.7 (0.216'') (0.0478'') (45,000 \text{ psi})/3.0$ $V_a = 418 \text{ lb}$

 $\frac{\text{Tilting of \#12-14 TEKS Screw in Steel Stud}}{V_a = 4.2(t_2{}^3D)^{1/2}F_{tu2}/n_s}$ $V_a = 4.2(0.0478''{}^3 \times 0.216'')^{1/2}(45,000 \text{ psi})/3.0$ $V_a = 306 \text{ lb}$

Bending of #12-14 TEKS Screw

$$\begin{split} L &= 1/2" \\ S &= \pi d^3/32 = \pi (0.157")^3/32 = 0.000380 \text{ in}^3 \\ F_b &= (1.3)(0.6F_y) = (1.3)(0.6)(134,000 \text{ psi}) = 104,520 \text{ psi} (1.3 \text{ factor for weak axis bending}) \\ F_b &= M/S = (VL/2)/S (L/2 \text{ for guided bending}) \\ V &= 2SF_b/L = (2)(0.000380 \text{ in}^3)(104,520 \text{ psi})/0.5" = 159 \text{ lb} \end{split}$$

Capacity of Connection is 159 lb

Alternate Installation – Through Frame to Concrete

3/16" Hilti Kwik-Con + Anchor

1-1/2" Minimum Edge Distance, 1-3/4" Minimum Embedment, 2" Minimum Spacing

0.094" thick 6063-T6 Aluminum Frame, 2 thicknesses at fastener location

1/4" Maximum Shim Space (1/2" bending span of anchor)

Minimum f'_c = 3,000 psi Concrete

Allowable Shear of 3/16" Hilti Kwik-Con + Anchor $P_{ss}/\Omega = 215$ lb (NOA-No. 21-0628.20)

 $\frac{\text{Bearing of 3/16" Hilti Kwik-Con + Anchor on Frame}}{V_a = 2DtF_u/n_u}$ $V_a = 2(0.170")(0.188")(30,000 \text{ psi})/3.0$ $V_a = 639 \text{ lb}$

Bending of 3/16" Hilti Kwik-Con + Anchor

$$\begin{split} & L = 1/2'' \\ S = \pi d^3/32 = \pi (0.170'')^3/32 = 0.000482 \text{ in}^3 \\ F_b = (1.3)(0.6F_y) = (1.3)(0.6)(137,000 \text{ psi}) = 106,860 \text{ psi} (1.3 \text{ factor for weak axis bending}) \\ F_b = M/S = (VL/2)/S (L/2 \text{ for guided bending}) \\ V = 2SF_b/L = (2)(0.000482 \text{ in}^3)(106,860 \text{ psi})/0.5'' = 206 \text{ lb} \end{split}$$

Capacity of Connection is 206 lb

Alternate Installation – Through Frame to CMU

3/16" Hilti Kwik-Con + Anchor

1-1/2" Minimum Edge Distance, 1" Minimum Embedment, 3" Minimum Spacing

0.094" thick 6063-T6 Aluminum Frame, 2 thicknesses at fastener location

1/4" Maximum Shim Space (1/2" bending span of anchor)

Minimum ASTM C90 CMU Block

 $\frac{\text{Allowable Shear of 3/16" Hilti Kwik-Con + Anchor}}{P_{ss}/\Omega = 150 \text{ lb}}$ (NOA-No. 21-0628.20)

 $\frac{\text{Bearing of 3/16" Hilti Kwik-Con + Anchor on Frame}}{V_a = 2DtF_u/n_u}$ $V_a = 2(0.170")(0.188")(30,000 \text{ psi})/3.0$ $V_a = 639 \text{ lb}$

Bending of 3/16" Hilti Kwik-Con + Anchor

$$\begin{split} & L = 1/2'' \\ S = \pi d^3/32 = \pi (0.170'')^3/32 = 0.000482 \text{ in}^3 \\ F_b = (1.3)(0.6F_y) = (1.3)(0.6)(137,000 \text{ psi}) = 106,860 \text{ psi} (1.3 \text{ factor for weak axis bending}) \\ F_b = M/S = (VL/2)/S (L/2 \text{ for guided bending}) \\ V = 2SF_b/L = (2)(0.000482 \text{ in}^3)(106,860 \text{ psi})/0.5'' = 206 \text{ lb} \end{split}$$

Capacity of Connection is 150 lb

intoctok	PROJECT: Installation Calculations – M600 Terrace Door	BY: TAD DATE: 12/29/23		
UICEICER	PROJECT NO.: Q7220.01-122-34-r1	CKD: ARK	SHEET: 11 OF 18	

Anchorage Requirements - DP = +/- 50 psf

<u>Head</u>

Head Load Area:	A = ((48") ² /4)/144 = 4 ft ²
Head Load:	W = (4 ft ²)(50 psf) = 200 lb
Load per Fastener:	w = (200 lb)/3 = 67 lb < 150 lb <u>OK</u>

<u>Jambs</u>

Jamb Load Area:	$A = ((48'')(96'')/144 - 4)/2 = 14 \text{ ft}^2$
Jamb Load:	W = (14 ft ²)(50 psf) = 700 lb
Load per Fastener:	w = (700 lb)/7 = 100 lb < 150 lb <u>OK</u>

Anchorage Requirements - DP = +/- 70 psf

<u>Head</u>

Head Load Area:	$A = ((48'')^2/4)/144 = 4 \text{ ft}^2$
Head Load:	W = (4 ft ²)(70 psf) = 280 lb
Load per Fastener:	w = (280 lb)/3 = 93 lb < 150 lb <u>OK</u>

<u>Jambs</u>

Jamb Load Area:	A = ((48")(96")/144 – 4)/2 = 14 ft ²
Jamb Load:	W = (14 ft ²)(70 psf) = 980 lb
Load per Fastener:	w = (980 lb)/7 = 140 lb < 150 lb <u>OK</u>

Hold fastener spacing to 14" O.C. per as tested on +/- 70 psf Design Pressure

intertek	PROJECT: Installation Calculations – M600 Terrace Door	BY: TAD	DATE: 12/29/23
UICEICEK	PROJECT NO.: 07220.01-122-34-r1	CKD: ARK	SHEET: 12 OF 18

M600 Terrace Door – 70 psf

ad Resistance Report					December 04, 20
Details					
Selected standard:	ASTM E1300	Extended Ba	asic		
Glazing Construc	ction (Doub	e Glazed	Insulating U	nit)	
Exterior Lite Prop	perties (3/16	in. Monolith	ic)		
Construction:	3/16 in. (FT	.)			
Airspace Propert	ies				
Thickness:	0.625 in.				
Interior Lite Prop	perties (3/16 i	n. Monolith	ic)		
Construction:	3/16 in. (FT	.)			
Load Resistance					
Short Duration (3	3 Sec)				
Description Exterior Lite Interior Lite	<u>NFL</u> 28.7 psf 28.7 psf	<u>GTF</u> 3.60 3.60	<u>LSF</u> 1/0.500 1/0.500	<u>LR</u> 206 psf 206 psf	
Comparisons					
Scenario 1 70.0 psf 3.00 se Approximate ce	ec <= 206 psf nter of glass de	flection	ОК		
Exterior Lite Interior Lite			0.67 0.67	in. in.	
tes					

Glass makeup is updated to 3/16" Fully Tempered interior and exterior from 5/32" tested glass to comply with ASTM E1300.

intoctok	PROJECT: Installation Calculations – M600 Terrace Door	BY: TAD	DATE: 12/29/23
UICEICEK	PROJECT NO.: Q7220.01-122-34-r1	CKD: ARK	SHEET: 13 OF 2

18

M600 Terrace Door – 50 psf

nalysis 1 oad Resistance Report					December 04, 202
Details					
Selected standard:	ASTM E1300	Extended Ba	sic		
Glazing Construc	tion (Doubl	e Glazed I	nsulating U	nit)	
Exterior Lite Prop	erties (3/16 i	n. Monolithi	c)		
Construction:	3/16 in. (FT)			
Airspace Properti	es				
Thickness:	0.625 in.				
Interior Lite Prop	erties (3/16 i	n. Monolithi	c)		
Construction:	3/16 in. (FT)			
Load Resistance					
Short Duration (3	Sec)				
Description Exterior Lite Interior Lite	<u>NFL</u> 28.7 psf 28.7 psf	<u>GTF</u> 3.60 3.60	<u>LSF</u> 1/0.500 1/0.500	<u>LR</u> 206 psf 206 psf	
Comparisons					
Scenario 1 50.0 psf 3.00 se Approximate cen	c <= 206 psf iter of glass def	lection	ОК		
Exterior Lite Interior Lite			0.54 0.54	in. in.	
otes					

Load resistance values are computed in accordance with ASTM E1300-16 Section 6.2 and are based on non-factored load values calculated in a manner consistent with those presented in ASTM E1300-16.

Glass makeup is updated to 3/16" Fully Tempered interior and exterior from 5/32" tested glass for consistancy with 70 psf glass makeup.

Appendix

HILTI KWIK-CON +

DESCRIPTION

PRODUCT REVISED as complying with the Florida Building Code NOA-No. 21-0628.20 Expiration Date: 12/12/2024 By: Manuel Jens Miam-Dade Product Control

Carbon steel screw anchors have a minimum yield strength of 120 ksi and a minimum tensile strength of 150 ksi. The screw anchors have a zinc coating with a minimum thickness of 8 μ m and are coated with an organic coating to resist corrosion. Three-sixteenths and 1/4-in. carbon steel screw anchors are available in 1-1/4, 1-3/4, 2-1/4, 2-3/4, 3-1/4 3-3/4 and 4 inch lengths.

DESIGN LOADS:

Carbon steel screws						
Anchor size	Embedment	Concrete	Concrete 300 psi		C90 Concrete block	
	depth	Tension	Shear	Tension	Shear	
3/16"	1"	112	215	116	150	
3/16"	1-3/4"	217	215	-	-	
1/4"	1"	198	379	122	251	
1/4"	1-3/4"	393	379	-	-	

園

Kwik-Con+ – Torx hex washer head

ALITIC

Kwik-Con+ — Torx flat head

0

GENERAL NOTES

- Design loads for concrete are based on uttimate loads divided by 4. Design loads are for light-weight or normal-weight ASTM C90 block and are based on uttimate loads divided by 5.
- 2. In order to achieve the design load, a minimum edge distance of 1-1/2" for 3/16" $\,$ ø screw, and 2-1/2" for 1/4" ø screw shall be observed.
- Minimum spacing of anchor shall be 2" in concrete and 3" in concrete blocks in order to acheive the design loads.
- Anchor installation shall be made in accordance with Hilti's published installation instructions in the Product Technical Guide.
- 5. Anchors are restricted from use in cracked concrete as defined in ACI 355.2.

Nominal diameter	Shank diameter (in.)	Thread major (in.)	Diameter root (in.)	
3/16"	0.170	0.217	0.145	
1/4"	0.224	0.283	0.190	

Hilti Kwik-Con+ Fastening system for concrete and masonry elements Revision date: October 31, 2019 Drawing: 1327-001 Sheet no. 1 of 1

For office use

Hilti, Inc.

7250 Dallas Parkway

Plano TX 75024

PRODUCT APPROVED as complying with the Florida Building Code NOA-No. 19–1113.04

Approval Date 12/12/2019

Miami-Dade Product Control

PROJECT NO.: Q7220.01-122-34-r1

TEKS Screw References

TABLE 5—FASTENER STRENGTH OF SCREWS^{1, 2, 3, 4, 5}

SCREW DIAMETER DESIGNATION (in.)	DIAMETER	ALLOWABLE FAS	TENER STRENGTH	NOMINAL FASTENER STRENGTH	
	(in.)	Tensile, P _{ts} /Ω (lbf)	Shear, P _{ss} /Ω (lbf)	Tensile, P _{ts} (lbf)	Shear, P _{ss} (lbf)
10-16	0.190	885	573	2654	1718
12-14	0.216	1184	724	3551	2171
12-24	0.216	1583	885	4750	2654
¹ / ₄ -14	0.250	1605	990	4816	2970
1/4-28	0.250	1922	1308	5767	3925

For SI: 1 inch = 25.4 mm, 1 lbf = 4.45 N.

¹For tension connections, the least of the allowable pull-out, pullover, and fastener tension strength found in Tables 2, 3, and 5, respectively, must be used for

design. ²For shear connection, the lower of the allowable shear (bearing) and the allowable fastener shear strength found in Table 4 and 5, respectively, must be used for design.

³See Section 4.1 for fastener spacing and end distance requirements. ⁴Nominal strengths are based on laboratory tests ⁵To calculate LRFD values, multiply nominal strength values by the LRFD Φ factor of 0.5.

TABLE 22.11 (Spaced Threads)

	6063-T6											
Nominal	D	Aluminum Thickness (Inches)										
Diameter	Thread	0.038	0.060	0.072	0.080	0.094	0.125	0.156	0.188	0.250	0.312	0.375
Per Inch	(Inch)	Allowable Pullout (Pounds)										
#8-18	0.1640	53	83	100	132	155	235	350	468	669	835	1004
#10-16	0.1900	61	96	116	153	180	239	372	509	775	968	1163
#12-14	0.2160		110	132	174	204	271	374	530	833	1100	1322
1/4-14	0.2500		127	152	201	236	314	433	614	964	1273	1530
5/16-12	0.3125								809	1334	1860	2296
3/8-12	0.3750								971	1601	2232	2755
6063-T6												
F _U (Tensile Ultimate Strength) 30000 psi								Sł	ading indi	cates trans	sition regio	on.
F _Y (Tensile Yield Strength) 25000 psi												

NOTE 32:

1. Each table lists allowable pull-out (internal threads) values. $S_F = 3.0$ for $D \le 0.25$ "; $S_F = 2.5$ for $D \ge 0.3125$ ". Fastener allowable strength (basic tension and external threads) needs to be checked separately. 2. For pilot hole sizes refer to tables 21.1 to 21.7

Fostener pullout not shown for aluminum thickness less than approximately 2 threads, unless tested at a lesser thickness.
 Multiple fastener connections and embrittlement need to be checked separately.

intoctok	PROJECT: Installation Calculations – M600 Terrace Door	BY: TAD	DATE: 12/29/23
UICEICER	PROJECT NO.: Q7220.01-122-34-r1	CKD: ARK	SHEET: 16 OF 18

WOOD SCREWS

TYPE-17 DEEP THREAD

Pan Head w/

Phillips Recess

	PAN PHILLIPS RECESS DEEP THREAD WOOD SCREW WITH TYPE-17 POINT												
Nominal Diameter & Threads	A Head Diameter		H Head Height		F	R M		D Major Diameter		T Threaded Length		Torque Kg/cm (Steel I screws)	Recess Size
					Recess Penetration Depth		Recess Diameter						
per Inch	Max	Min	Max	Min	Max	Min	Ref	Max	Min	L≤1"	L>1"	Min	
6-13	0.270	0.256	0.097	0.087	0.080	0.055	0.159	0.142	0.131	Full thread	2/3 thread	21	#2
7-12	0.296	0.281	0.106	0.096	0.089	0.064	0.170	0.158	0.147	Full thread	2/3 thread	28	#2
8-11	0.322	0.306	0.115	0.105	0.097	0.071	0.175	0.169	0.159	Full thread	2/3 thread	37	#2
10-9	0.373	0.357	0.133	0.122	0.113	0.089	0.192	0.194	0.185	Full thread	2/3 thread	55	#2
12-8	0.425	0.407	0.151	0.139	0.124	0.098	0.252	0.230	0.213	Full thread	2/3 thread	64	#3
												_	
	Tolerance on Length		Up to 5/8"							± 0.03			
Toleran			Over 5/8 to 1.5"					_		± 0.05			<u> </u>
Leng			Over 1.	5 to 2.75						± 0.06			
		Over 2.75*								± 0.09			

Description	An externally threaded fastener with a dome-shaped head, cross recess and a single lead thread. The shark has a reduced diameter and a chip cavity cut out where the final several threads end at the tip.								
Applications / Advantages	The deeper thread design offers greater resistance to pull-out forces. Popular in fastening cabinet hardware in locations that do not require the head to countersink. The chip cavity (or auger point) are designed to attach hinges to the edge of hardwood face frames.	Used in environments where corrossion resistance is neccesary. The type-17 point enables the screw to more easily penetrate the material into which it's fastened. Can be used in particle board, wood and some plastics.							
Material	C1018 - 1022 case-hardened steel	18-8 Stainless Steel							
Surface Hardness	Vickers 450 HV minimum								
Case Depth	0.004" - 0.009"								
Torque	See values in above table	•							
Plating	See Appendix-A for plating information	Stainless deep thread screws are usually supplied without additional finish.							

BY: TAD **DATE:** 12/29/23

PROJECT NO.: Q7220.01-122-34-r1

CKD: ARK **SHEET:** 17 OF 18

Tap &	Clearar	nce Dri	l Sizes		Тар	Drill			Clearar	nce Drill					
			75% Thr	read for	50% Th	read for									
Screw	Major	Threads	Minor	Aluminum	, Brass, &	Steel, S	tainless,	Close Fit		Free Fit					
Size	Diameter	Per Inch	Diameter	Plas	stics	& I	ron								
				Drill Size	Dec. Eq.	Drill Size	Dec. Eq.	Drill Size	Dec. Eq.	Drill Size	Dec. Eq.				
0	.0600	80	.0447	3/64	.0469	55	.0520	52	.0635	50	.0700				
1	.0730	64	.0538	53	.0595	1/16	.0625	48	.0760	46	.0810				
		72	.0560	53	.0595	52	.0635								
2	.0860	56	.0641	50	.0/00	49	.0730	43	.0890	41	.0960				
		64	.0668	50	.0700	48	.0760								
3	.0990	40	.0734	4/	.0/65	44	.0800	37	.1040	35	.1100				
		40	.0771	43	0800	43	.0070								
4	.1120	40	0864	43	.0070	40	.0980	32	.1160	30	.1285				
		40	.0004	38	.1015	7/64	.1094								
5	.125	44	.0971	37	.1040	35	.1100	30	.1285	29	.1360				
		32	.0997	36	.1065	32	.1160								
6	.138	40	.1073	33	.1130	31	.1200	27	.1440	25	.1495				
		32	.1257	29	.1360	27	.1440								
8	.1640	36	.1299	29	.1360	26	.1470	18	.1695	16	.1770				
		24	.1389	25	.1495	20	.1610			_					
10	.1900	32	.1517	21	.1590	18	.1695	9	.1960	7	.2010				
		24	.1649	16	.1770	12	.1890								
12	.2160	28	.1722	14	.1820	10	.1935	2	.2210	1	.2280				
		32	.1777	13	.1850	9	.1960								
		20	.1887	7	.2010	7/32	.2188		.2570						
1/4 .	.2500	28	.2062	3	.2130	1	.2280	F		н	.2660				
		32	.2117	7/32	.2188	1	.2280								
		18	.2443	F	.2570	J	.2770								
5/16	.3125	24	.2614		.2720	9/32	.2812	Р	.3230	Q	.3320				
		32	.2742	9/32	.2812	L	.2900								
	2750	16	.2983	5/16	.3125	Q	.3320	w	.3860	x	2070				
3/8	.3750	24	.3239	Q	.3320	S	.3480				.3970				
		32	.3367	11/32	.3438	T	.3580								
7/44	(375	14	.3499	0	.3680	25/64	.3906	20/64	4534	45 (22	44.97				
//10	.43/5	20	.3/62	25/64	. 3906	13/32	.4062	29/04	.4531	15/32	.400/				
		28	.3937	27/64	.4040	20/64	.4130								
4/2	5000	13	.4000	2//04	.4219	45/04	.4001	22/64	E4E4	47/22	6242				
1/2	.5000	20	.4307	15/32	.4031	15/32	.4000	33/04	.5150	1// 32	.5312				
		12	4603	31/64	4844	33/64	5156								
9/16	.5625	18	.4943	33/64	.5156	17/32	.5312	37/64	.5781	19/32	.5938				
		24	.5114	33/64	.5156	17/32	.5312			17/32					
		11	.5135	17/32	.5312	9/16	.5625								
5/8	.6250	18	.5568	37/64	.5781	19/32	.5938	41/64	.6406	21/32	.6562				
		24	.5739	37/64	.5781	19/32	.5938								
11/16	.6875	24	.6364	41/64	.6406	21/32	.6562	45/64	.7031	23/32	.7188				
		10	.6273	21/32	.6562	11/16	.6875								
3/4	.7500	16	.6733	11/16	.6875	45/64	.7031	49/64	.7656	25/32	.7812				
		20	.6887	45/64	.7031	23/32	.7188								
13/16	.8125	20	.7512	49/64	.7656	25/32	.7812	53/64	.8281	27/32	.8438				
		9	.7387	49/64	.7656	51/64	.7969								
7/8	.8750	14	.7874	13/16	.8125	53/64	.8281	57/64	.8906	29/32	.9062				
		20	.8137	53/64	.8281	27/32	.8438								
15/16	.9375	20	.8762	57/64	.8906	29/32	.9062	61/64	.9531	31/32	.9688				
		8	.8466	7/8	.8750	59/64	.9219								
1	1.000	12	.8978	15/16	.9375	61/64	.9531	1-1/64	1.0156	1-1/32	1.0313				
		20	.9387	61/64	.9531	31/32	.9688								

intoctok	PROJECT: Installation Calculations – M600 Terrace Door	BY: TAD	DATE: 12/29/23
UICERCER	PROJECT NO.: Q7220.01-122-34-r1	CKD: ARK	SHEET: 18 OF 18

Revision Log

<u>Rev. #</u>	Date	Page(s)	Revision(s)
0	12/08/23	N/A	Original report issue
1	12/29/23	3	Update NAMI Certification on L0767.01-801- 44-r2