intoctok	PROJECT: Installation Calculation – T500 SH	BY:	TAD	DATE: 10/30/2023
UICEICEK	PROJECT NO.: Q5273.01-122-34	CKD	ARK	SHEET: 1 OF 13

Window Installation Calculations

T500 Single Hung Window

Report Q5273.01-122-34

Rendered to:

QUAKER WINDOWS & DOORS 504 Highway 63 South Freeburg, Missouri 65035

Prepared by:

Tanya A. Dolby, P.E. Adam R. Kunkle

Architectural Testing, Inc. 130 Derry Court York, Pennsylvania 17406 Phone: (717) 764-7700 FL COA 29274

October 30, 2023

Tanya A. Dolby, P.E. Manager, Engineering Services Adam R. Kunkel Project Engineer

<u>Scope</u>

Architectural Testing, Inc., an Intertek company, was contracted by Quaker Windows & Doors to evaluate alternate installation methods for their T500 Single Hung windows. The evaluation is based on physical testing and product certifications.

Reference standards utilized in this project include:

Florida Building Code, Building, 8th Edition (2023). International Code Council, 2023.

ANSI/AWC NDS-2018 *National Design Specification (NDS) for Wood Construction with 2018 Supplement*. American Wood Council, 2018.

ADM1-2020 Aluminum Design Manual. The Aluminum Association, Inc., 2020.

AISI S100-16(2020) North American Specification for the Design of Cold-Formed Steel Structural Members, 2016(Reaffirmed 2020). American Iron and Steel Institute, 2020.

The anchorage analyses presented herein do not address the water resistance, water penetration or air infiltration performance of the installation method or the installed product. In addition, the analyses rely on the assumption that the building substrate is capable of withstanding incurred loads.

Certification of Independence

In accordance with Rule 61G20-3 Florida Administrative Code, Architectural Testing, Inc. hereby certifies the following:

- Architectural Testing does not have, nor does it intend to acquire or will it acquire, a financial interest in any company manufacturing or distributing products tested or labeled by the agency.
- Architectural Testing is not owned, operated or controlled by any company manufacturing or distributing products it tests or labels.
- Tanya A. Dolby, P.E. does not have nor will acquire, a financial interest in any company manufacturing or distributing products for which the reports are being issued.

Tanya A. Dolby, P.E. does not have, nor will acquire, a financial interest in any other entity involved in the approval process of the product.

intoctok	PROJECT: Installation Calculation – T500 SH	BY: TAD	DATE: 10/30/2023
UICEICER	PROJECT NO.: Q5273.01-122-34	CKD: ARK	SHEET: 3 OF 13

<u>Analyses</u>

Summary of Test Results

The following table summarizes the various T500 Single Hung Window products and their corresponding performance levels which have been established by testing or product certification.

Table 1 Summary of Test Results

Series/Model	Test Report Number	Product Certification	Size (W x H)	Performance
T500 Single Hung	C5558.01-801-47	NI011475-R4	60" x 99"	+/- 50.0 psf

Testing documented in Table 1 was conducted by the Architectural Testing laboratory in Plano, Texas (Florida Department of Business & Professional Regulation Test Lab No. TST1910, IAS Accredited Laboratory TL-331).

As-Tested Installation Analysis

For air/water/structural testing, the test specimen was secured to a 2x Spruce-Pine-Fir buck with #6 x 1-5/8" wood screws through the nail fin. The as-tested installation method is evaluated on page 5 and the established design capacity summarized in Table 2.

Table 2 As-tested Anchorage Design Capacities.

Test	Connection	Capacity
	#6 x 1-5/8" Wood Screw Through Nail Fin	
Air/Water/Structural Test	3" from each corner; 11-1/2" on center at jambs	75 lb
	13" on center at head and sill	

The capacities presented in Table 2 will be used to prove acceptable alternate anchors and substrates for the windows.

Alternate Anchorages

Pages 6 and 7 present the calculation of alternate anchorages for the windows. The alternate anchorage capacities are summarized in Table 3.

Substrate	Anchor	Capacity	Comments			
			1. Limited by Pull-Over			
Wood	#10 x 2" Wood Scrow	102 lb	2. 1-1/2" Minimum Penetration			
S-P-F 2x	#10 x 2 Wood Screw	102 10	3. 1/4" Maximum Shim Space			
			4. Min Wood blocking, G = 0.55			
			1. Limited by Pull-Over			
18 Gauge		102 lb	2. Minimum 18 gauge 33 KSI Steel			
Steel Stud	#10-10 TEKS SCIEW	102 10	3. Full penetration +3 threads			
			4. 1/4" Maximum Shim Space			

Table 3 Alternate Anchorage Capacities for Fin Installation

The #10 x 2" wood screw has more capacity than the as-tested installation method. Thus, the #10 x 2" wood screw may be used for installation to wood at the as-tested spacing. Calculations presented in page 8 show all evaluated anchors are not overloaded for the approved window size and design pressure.

Thus, #10 x 2" wood screws installed to wood and #10-16 TEKS screws installed to steel stud as specified in Table 3 are approved alternate installations for the subject window with the anchors installed at the as-tested spacing.

As-Tested Nail Fin Installation to Wood

#6 x 1-5/8" Wood Screw

0.062" thick 6063-T6 Aluminum Nailing Fin

Spruce-Pine-Fir 2x Wood Substrate Minimum (G=0.55)

ASD Withdrawal

Withdrawal of #6 PH Wood Screw

W' = 2,850(G²)(D)(Cd)(Cm)(Ct)(Ceg)(Ctn)(L) W' = 2,850 (0.55^2)(0.1365'')(1.6)(0.7)(0.7)(1.00)(1.0)(1.50'') W' = 138 lb

Adjustment Factors

Load Duration Factor - Ten Minutes, Cd = 1.6 Moisture Factor - Fabrication > 19% and In-Service > 19%, Cm = 0.7 Temperature Factor - $100^{\circ}F < T \le 125^{\circ}F$, Ct = 0.7 End Grain Factor - No, Ceg = 1.00 Toe Nail Factor - No, Ctn = 1.0

Allowable Tension of #6 x 1-5/8" Wood Screw W = 1.6(1.625"-0.062")(69 lb/in) (NDS, Table 11.2B) W = 173 lb

Pull-Over of #6 x 1-5/8" Wood Screw

$$\begin{split} P_{nov} &= C_{pov} t_1 F_{tu1} (D_{ws} - D_h) / 3.0 \\ P_{nov} &= 1.0 (0.0625'') (30,000 \text{ psi}) (0.270'' - 0.1495'') / 3.0 \\ P_{nov} &= 75 \text{ lb} \end{split}$$

Capacity of Connection is 75 lb

Alternate Nail Fin Installation to Wood

- #10 Pan Head Wood Screw
- 1-1/2" Minimum Penetration
- 1/16" thick 6063-T6 Aluminum Nailing Fin
- G = 0.55 Minimum SYP 2x Wood Blocking
- ¼" maximum shim space

ASD Withdrawal

Withdrawal of #10 PH Wood Screw

W' = 2,850(G²)(D)(Cd)(Cm)(Ct)(Ceg)(Ctn)(L) W' = 2,850 (0.55^2)(0.190'')(1.6)(0.7)(0.7)(1.00)(1.0)(1.50'') W' = 193 lb

Adjustment Factors

Load Duration Factor - Ten Minutes, Cd = 1.6 Moisture Factor - Fabrication > 19% and In-Service > 19%, Cm = 0.7 Temperature Factor - $100^{\circ}F < T \le 125^{\circ}F$, Ct = 0.7 End Grain Factor - No, Ceg = 1.00 Toe Nail Factor - No, Ctn = 1.0

Pull-Over of #10 PH Wood Screw

$$\begin{split} &\mathsf{P}_{\mathsf{nov}} = \mathsf{C}_{\mathsf{pov}} t_1 \mathsf{F}_{\mathsf{tu1}} (\mathsf{D}_{\mathsf{ws}}\text{-}\mathsf{D}_{\mathsf{h}}) / 3.0 \\ &\mathsf{P}_{\mathsf{nov}} = 1.0 (0.0625'') (30,000 \text{ psi}) (0.365'' - 0.201'') / 3.0 \\ &\mathsf{P}_{\mathsf{nov}} = 103 \text{ lb} \end{split}$$

Calculated Capacity of Connection is 103 lb

Alternate Nail Fin Installation to Steel Stud

#10-16 TEKS Screw

Full Penetration +3 Threads

1/16" thick 6063-T6 Aluminum Nailing Fin

Minimum 18 Gauge 33 KSI Steel Stud (Qualifies thicker and stronger steel)

¼" maximum shim space

Allowable Tension of #10-16 TEKS Screw V_a = 885 lb (ESR-1976)

 $\begin{array}{l} \underline{Pull-Over \ of \ \#10-16 \ TEKS \ Screw \ in \ Nail \ Fin}} \\ P_{nov} = C_{pov} t_1 F_{tu1} (D_{ws} - D_h) / 3.0 \\ P_{nov} = 1.0 (0.0625'') (30,000 \ psi) (0.365'' - 0.201'') / 3.0 \\ P_{nov} = 103 \ lb \end{array}$

 $\frac{\text{Pull-Out of #10-16 TEKS Screw in Steel Stud}}{P_{not} = 0.85t_c dF_{u2}/3.0}$ $P_{not} = 0.85(0.0478")(0.190")(45,000 \text{ psi})/3.0$ $P_{not} = 116 \text{ lb}$

Capacity of Connection is 103 lb

iotoctok	PROJECT: Installation	on Calculation – T500 SH	BY: TAD	DATE: 10/30/2023
	PROJECT NO.: Q52	73.01-122-34	CKD: ARK	SHEET: 8 OF 13
Anchorage Lo	ads_			
Window S	Size:	60" wide by 99" tall		
Design Pr	essure:	+/- 50 psf		
As-tested	Anchor Spacing:	11-1/2" on center at jambs 13" on center at head and sill		
Anchors:		9 each jamb; 5 head; 5 sill; <u>28 total</u>	anchors	
Maximun	n Load to Anchor:	(60")(99")(50 psf/144)/(28 anchors)	= 74 lb/ar	ichor

Maximum Load to Anchor < Minimum Anchor Capacity; Anchorages OK

iotoctok	PROJECT: Installation Calculation – T500 SH	BY: TAD	DATE: 10/30/2023
UICEICEK	PROJECT NO.: Q5273.01-122-34	CKD: ARK	SHEET: 9 OF 13

Glass Analysis

nalysis 1 oad Resistance Report					October 29, 202
Details					
Selected standard:	ASTM E1300	Extended Ba	sic		
Glazing Construc	tion (Doub	le Glazed I	insulating U	nit)	
Exterior Lite Prop	erties (3/16	in. Monolithi	<u>c</u>)		
Construction:	3/16 in. (Al	N)			
Airspace Properti	es				
Thickness:	0.625 in.		_		
Interior Lite Prop	erties (3/16 i	in. Monolithi	c)		
Construction:	3/16 in. (Al	N)			
Load Resistance					
Short Duration (3	Sec)				
Description	NFL	GTF	LSF	LR	
Exterior Lite Interior Lite	46.9 psf 46.9 psf	0.900 0.900	1/0.500 1/0.500	84.4 psf 84.4 psf	
Comparisons					
Scenario 1					
50.0 psf 3.00 se	c <= 84.4 psf	flaction	OK		
Approximate cen Exterior Lite	iter of glass de	nection	0.43	Lin	
Interior Lite			0.43	in.	
otes					

Load resistance values are computed in accordance with ASTM E1300-16 Section 6.2 and are based on non-factored load values calculated in a manner consistent with those presented in ASTM E1300-16.

PROJECT NO.: Q5273.01-122-34

TEKS Screw References

TABLE 5—FASTENER STRENGTH OF SCREWS^{1, 2, 3, 4, 5}

SCREW	DIAMETER	ALLOWABLE FAS	TENER STRENGTH	NOMINAL FASTENER STRENGTH		
DESIGNATION	(in.)	Tensile, P_{ts}/Ω (lbf) Shear, P_{ss}/Ω (lbf)		Tensile, P _{ts} (lbf)	Shear, P _{ss} (lbf)	
10-16	0.190	885	573	2654	1718	
12-14	0.216	1184	724	3551	2171	
12-24	0.216	1583	885	4750	2654	
¹ / ₄ -14	0.250	1605	990	4816	2970	
1/4-28	0.250	1922	1308	5767	3925	

For SI: 1 inch = 25.4 mm, 1 lbf = 4.45 N.

¹For tension connections, the least of the allowable pull-out, pullover, and fastener tension strength found in Tables 2, 3, and 5, respectively, must be used for

design. ²For shear connection, the lower of the allowable shear (bearing) and the allowable fastener shear strength found in Table 4 and 5, respectively, must be used for design.

³See Section 4.1 for fastener spacing and end distance requirements. ⁴Nominal strengths are based on laboratory tests ⁵To calculate LRFD values, multiply nominal strength values by the LRFD Φ factor of 0.5.

TABLE 22.11 (Spaced Threads)

						6063-T6						
Nominal	D		Aluminum Thickness (Inches)									
Diameter	Thread	0.038	0.060	0.072	0.080	0.094	0.125	0.156	0.188	0.250	0.312	0.375
Per Inch	(Inch)					Allowab	le Pullout ((Pounds)				
#8-18	0.1640	53	83	100	132	155	235	350	468	<mark>66</mark> 9	835	1004
#10-16	0.1900	61	96	116	153	180	239	372	509	775	968	1163
#12-14	0.2160		110	132	174	204	271	374	530	833	1100	1322
1/4-14	0.2500		127	152	201	236	314	433	614	964	1273	1530
5/16-12	0.3125								809	1334	1860	2296
3/8-12	0.3750								971	1601	2232	2755
6063-T6												
F _U (Tensile	e Ultimate	Strength)		30000	psi			Sł	ading indi	cates trans	sition regio	on.
F _Y (Tensile	e Yield Stre	ngth)		25000	psi							

NOTE 32:

1. Each table lists allowable pull-out (internal threads) values. $S_F = 3.0$ for $D \le 0.25$ "; $S_F = 2.5$ for $D \ge 0.3125$ ". Fastener allowable strength (basic tension and external threads) needs to be checked separately. 2. For pilot hole sizes refer to tables 21.1 to 21.7

Fostener pullout not shown for aluminum thickness less than approximately 2 threads, unless tested at a lesser thickness.
 Multiple fastener connections and embrittlement need to be checked separately.

intoctok	PROJECT: Installation Calculation – T500 SH	BY: TAD	DATE: 10/30/2023
UICERCER	PROJECT NO.: Q5273.01-122-34	CKD: ARK	SHEET: 11 OF 13

<u>Appendix</u>

Pan Head w/ Phillips Recess

WOOD SCREWS TYPE-17 DEEP THREAD

Nominal	1	1	-	ł	1	R	M		0	1	г	Torque	
Diameter & Threads	Head Diameter		Head Diameter Head Height		Recess Recess Penetration Depth Diameter		Major Diameter		Threaded Length		Kg/cm (Steel screws)	Recess Size	
per Inch	Max	Min	Max	Min	Max	Min	Ref	Max	Min	L±1"	L>1"	Min	
6-13	0.270	0.256	0.097	0.087	0.080	0.055	0.159	0.142	0.131	Full thread	2/3 thread	21	#2
7-12	0.296	0.281	0.106	0.096	0.089	0.064	0.170	0.158	0.147	Full thread	2/3 thread	28	#2
8-11	0.322	0.306	0.115	0.105	0.097	0.071	0.175	0.169	0.159	Full thread	2/3 thread	37	#2
10-9	0.373	0.357	0.133	0.122	0.113	0.089	0.192	0.194	0.185	Full thread	2/3 thread	55	#2
12-8	0.425	0.407	0.151	0.139	0.124	0.098	0.252	0.230	0.213	Full thread	2/3 thread	64	#3
			Up t	o 5/8"						± 0.03			
Toleran	ce on	Over 5/8 to 1.5"							± 0.05			<u> </u>	
Leng	,th		Over 1.	5 to 2.75						± 0.06			
			Over	2.75*						± 0.09			

Description	An externally threaded fastener with a dome-shaped head, cross recess and a single lead thread. The shark has a reduced diameter and a chip cavity cut out where the final several threads end at the tip.						
Applications / Advantages	The deeper thread design offers greater resistance to pull-out forces. Popular in fastening cabinet hardware in locations that do not require the head to countersink. The chip cavity (or auger point) are designed to attach hinges to the edge of hardwood face frames.	Used in environments where corrossion resistance is neccesary. The type-17 point enables the screw to more easily penetrate the material into which it's fastened. Can be used in particle board, wood and some plastics.					
Material	C1018 - 1022 case-hardened steel	18-8 Stainless Steel					
Surface Hardness	Vickers 450 HV minimum						
Case Depth	0.004" - 0.009"						
Torque	See values in above table						
Plating	See Appendix-A for plating information	Stainless deep thread screws are usually supplied without additional finish.					

BY: TAD **DATE:** 10/30/2023

PROJECT NO.: Q5273.01-122-34

CKD: ARK **SHEET:** 12 OF 13

Tap & Clearance Drill Sizes Tap Drill					Clearance Drill							
Screw Size	Major Diameter	Threads Per Inch	Minor Diameter	75% Thi Aluminum Plas	read for 1, Brass, & stics	50% Thr Steel, St & I	read for tainless, ron	Close	e Fit	Free	e Fit	
				Drill Size	Dec. Eq.	Drill Size	Dec. Eq.	Drill Size	Dec. Eq.	Drill Size	Dec. Eq.	
0	.0600	80	.0447	3/64	.0469	55	.0520	52	.0635	50	.0700	
1	.0730	64	.0538	53	.0595	1/16	.0625	48	.0760	46	.0810	
		56	.0560	53	.0595	52	.0635					
2	.0860	50	.0041	50	.0700	47	.0730	43	.0890	41	.0960	
		48	0734	47	0785	40	0860					
3	.0990	56	.0771	45	.0820	43	.0890	37	.1040	35	.1100	
		40	.0813	43	.0890	41	.0960			30	.1285	
4	.1120	48	.0864	42	.0935	40	.0980	32	.1160			
-		40	.0943	38	.1015	7/64	.1094	20	1005			
5	.125	44	.0971	37	.1040	35	.1100	30	.1285	29	.1360	
4	129	32	.0997	36	.1065	32	.1160	27	1440	25	.1495	
0	.150	40	.1073	33	.1130	31	.1200	27	.1440			
8	1640	32	.1257	29	.1360	27	.1440	18	1695	16	1770	
	.1010	36	.1299	29	.1360	26	.1470					
10	.1900	24	.1389	25	.1495	20	.1610	9	.1960	7	.2010	
		32	.1517	21	.1590	18	.1695	, i				
12	2440	24	.1649	16	.1770	12	.1890		2240		.2280	
12	.2160	28	.1/22	14	.1820	10	.1935	2	.2210	1		
		32	.1///	13	.1850	9	.1960			н	.2660	
1/4	2500	20	.100/	/	.2010	1/32	.2100	F	2570			
1/4	1/4 .2500	20	2117	7/32	2199	1	.2200	· ·	.2570			
		18	2443	7732 F	2570		2770	Р	.3230	Q	.3320	
5/16	.3125	24	.2614	- i	.2720	9/32	.2812					
		32	.2742	9/32	.2812	L	.2900					
		16	.2983	5/16	.3125	Q	.3320					
3/8	.3750	24	.3239	Q	.3320	S	.3480	w	.3860	x	.3970	
		32	.3367	11/32	.3438	Т	.3580					
		14	.3499	U	.3680	25/64	.3906					
7/16	.4375	20	.3762	25/64	. 3906	13/32	.4062	29/64	54 .4531	15/32	.4687	
		28	.3937	Y	.4040	Z	.4130					
		13	.4056	27/64	.4219	29/64	.4531			17/32	.5312	
1/2	1/2 .5000	20	.4387	29/64	.4531	15/32	.4688	33/64	3/64 .5156			
		28	.4562	15/32	.4688	15/32	.4688					
0/16	6426	12	.4603	31/64	.4844	33/64	.5156	37/64	37/64 .5781	19/32	.5938	
9/16	.3023	10	.4943	33/04	.0100	17/32	.0312					
		11	5135	17/32	5312	9/16	5625					
5/8	.6250	18	.5568	37/64	.5781	19/32	.5938	41/64	.6406	21/32 .6	.6562	
5/0	.0250	24	.5739	37/64	.5781	19/32	.5938					
11/16	.6875	24	.6364	41/64	.6406	21/32	.6562	45/64	.7031	23/32	.7188	
3/4 .7500		10	.6273	21/32	.6562	11/16	.6875	49/64	64 .7656	25/32	.7812	
	.7500	16	.6733	11/16	.6875	45/64	.7031					
		20	.6887	45/64	.7031	23/32	.7188					
13/16	.8125	20	.7512	49/64	.7656	25/32	.7812	53/64	.8281	27/32	.8438	
7/8	.8750	9	.7387	49/64	.7656	51/64	.7969	57/64	.8906	29/32	.9062	
		14	.7874	13/16	.8125	53/64	.8281					
		20	.8137	53/64	.8281	27/32	.8438					
15/16	.9375	20	.8762	57/64	.8906	29/32	.9062	61/64	.9531	31/32	.9688	
		8	.8466	7/8	.8750	59/64	.9219				1.0313	
1	1.000	12	.8978	15/16	.9375	61/64	.9531	1-1/64	1.0156	1-1/32		
		20	.9387	61/64	.9531	31/32	.9688					

iotoctok	PROJECT: Installation Calculation – T500 SH	BY: TAD DATE: 10/30/2023			
UICERCER	PROJECT NO.: Q5273.01-122-34	CKD	: ARK	SHEET: 13 OF 13	

Revision Log

<u>Rev. #</u>	Date	Page(s)	Revision(s)

0 10/30/23 N/A

Original report issue