intoctok	PROJECT: QUAKER C600/C605/W600/W605 Fixed Windows	BY: TAD	DATE: 04/06/23
UICEICEK	PROJECT NO.: P8760.01-122-34-r2	CKD: ARK	SHEET: 1 OF 20

Window Installation Analysis

QUAKER WINDOWS & DOORS C600/C605/W600/W605 Fixed Windows

Report P8760.01-122-34

Rendered to:

Quaker Windows & Doors P.O. Box 128 504 Highway 63 South Freeburg, MO 65035

Prepared by:

Tanya A. Dolby, P.E. Adam Kunkel

Architectural Testing, Inc. 130 Derry Court York, Pennsylvania 17406 (717) 764-7700

April 6, 2023 Revision 2: March 25, 2024

Tanya A. Dolby, P.E. Manager, Engineering Services Adam Kunkel Project Engineer

<u>Scope</u>

Architectural Testing, Inc., an Intertek company, was contracted by Quaker Window & Doors to perform installation analysis for C600/C605/W600/W605 Fixed Windows on test report M3429.01-201-47-r1.

The analyses performed satisfy the methods and requirements of the following:

Florida Building Code, Building, 8th Edition (2023). International Code Council, 2023.

ADM-2020 Aluminum Design Manual. The Aluminum Association, Inc., 2020.

AAMA TIR-A9-14 *Design Guide for Metal Cladding Fasteners, Includes 2020 Addendum.* American Architectural Manufacturers Association, 2014.

AISI S100-16(2020) North American Specification for the Design of Cold-Formed Steel Structural Members, 2020. American Iron and Steel Institute, 2020.

ICC-ES Report ESR-1976 ITW Buildex TEKS Self-Drilling Fasteners. ICC Evaluation Service. 01/2023.

GANA Glazing Manual, 50th Anniversary Edition

ANSI/AWC NDS-2018 National Design Specification (NDS) for Wood Construction with 2018 Supplement. American Wood Council, 2018.

The calculations presented herein are for the integrity of the window installations based on wind load only. The weather tightness of the installation is not addressed by this report. The air/water/structural performance of the individual products is not proven by this report.

Certification of Independence

In accordance with Rule 61G20-3 Florida Administrative Code, Architectural Testing, Inc. hereby certifies the following:

- Architectural Testing does not have, nor does it intend to acquire or will it acquire, a financial interest in any company manufacturing or distributing products tested or labeled by the agency.
- Architectural Testing is not owned, operated or controlled by any company manufacturing or distributing products it tests or labels.
- Tanya A. Dolby, P.E. and Adam R. Kunkel do not have nor will acquire, a financial interest in any company manufacturing or distributing products for which the reports are being issued.
- Tanya A. Dolby, P.E. and Adam R. Kunkel do not have, nor will acquire, a financial interest in any other entity involved in the approval process of the product.

Analyses

Summary of Test Results

The following table summarizes the C600/C605/W600/W605 Fixed Windows and the corresponding performance level established by testing.

Table 1 Summary of Test Results

Series/Model	Test Report Number	Product Certification	Size (W x H)	Performance
C600/C605/W600/W605 Fixed Windows	M3439.01-201-47- r1 (05/25/22)	NI014507.07-R1	60" x 99"	+/- 100 psf

Testing documented in Table 1 was conducted by the Intertek Testing laboratory in Fridley, Minnesota (Florida Department of Business & Professional Regulation Test Lab No. TST1795, IAS Accredited Laboratory TL-285).

As-Tested Installation Analysis

The test specimen was secured to a 2x Spruce-Pine-Fir wood buck with $#8 \times 1-5/8''$ course thread wood/deck screws. The as-tested installation method is evaluated on pages 5 and the established design capacity summarized in Table 2. Alternate anchorage is shown in Table 3 with on center spacings on pages 6 and 7.

Table 2 As-Tested Anchorage Design Capacity

Test	Connection	Capacity
Fixed Window	Nailing Fin with #8 x 1-5/8" course thread wood/deck screws, Located 3" from each corner and 15"-18" on center at head, sill, and jambs	86 lb

Anchorage Requirements

#8 x 1-5/8" PH Wood/Deck Screw actual test anchor capacity based on tested spacing:

Design Pressure	100.	0 psf				
Anchor Capacity	300.	0 lb (Anchor to	o Wood)			
	Width, w	Height, h			R	Anchor Spacing
Window Mark	Width, w (inch)	Height, h (inch)	w/h	gamma	R (lb/inch)	Anchor Spacing (in)

Calculated alternate anchors are shown for 50 psf, 70 psf, and 100 psf design pressures, #10 and #12 fasteners, wood and metal stud substrates.

The alternate anchorage conditions have design capacities which are comparable to or exceeds the design capacity of the as tested anchorage. All anchorage is installed 3" from corners and at the spacing calculated shown on page 6 of 18 for 50 psf, 70 psf, and 100 psf Design Loads. Maximum shim space between the window frame and surrounding substrate is 1/4" for all conditions. Anchors must be fully shimmed and supported.

Alternate Anchorage Capacities

Installation	Connection	Capacity	Comments
Nailing Fin to Wood	#10 PH Wood Screw	114 lb	 Limited by pull-over 1 ½" minimum penetration G = 0.55 Minimum SPF
Nailing Fin to Wood	#10 Round Washer Head Wood Screw	178 lb	 Limited by pull-over 1 ½" minimum penetration G = 0.55 Minimum SPF
Nailing Fin to Wood	#12 PH Wood Screw	130 lb	 4. Limited by pull-over 5. Full penetration +3 threads 6. G = 0.55 Minimum SPF
Nailing Fin to Steel	#10 HWH TEKS Screw	128 lb	 Limited by pull-out Full penetration +3 threads Min 18 gauge 33 KSI steel
Nailing Fin to Steel	#12 HWH TEKS Screw	136 lb	 Limited by pull-out Full penetration +3 threads Min 18 gauge 33 KSI steel

Table 3 Alternate Anchorage Capacity

Required Anchor Spacing at 100 psf, 70 psf, 50 psf Design Pressure

Anchorage Requirements

Although the capacities of the alternate anchorages exceed the capacity of the as-tested anchorage, it must be determined the anchorages are not overloaded for the approved window size and design pressures. Calculations presented in page 14 show required spacing for the evaluated anchorage conditions. Results are summarized in the following table.

Table 5 Anchorage Requirements

		Spa	cing at Ja	mbs	Spacing at Head/Sill (in)			
Substrate	Anchor	50 psf	70 psf	100 psf	50 psf	70 psf	100 psf	
	#10 PH Wood Screw	11"	8"	6"	13"	9"	7"	
Nailing Fin to Wood	#10 Round Washer Head Wood Screw	15"	12"	9"	15"	15"	10"	
	#12 PH Wood Screw	13"	9"	6"	15"	11"	7"	
Nailing Fin	#10 HWH TEKS Screw	12"	9"	6"	15"	10"	7"	
to Steel	#12 HWH TEKS Screw	13"	9"	7"	15"	11"	8"	

If the spacing reported in Table 5 exceeds the as-tested spacing reported in Table 2, the astested spacing shall govern. Spacing limited to 15" on center maximum.

Glazing analysis was conducted and shown on page 14. Glass is shown to have a Load Resistance of 174 psf design pressure, which is greater than the product design pressure rating of 100 psf.

Reference Drawings

The reference drawings are the basis of the analysis presented herein and may not reflect the requirements established by this analysis.

- M3439.01-201-47-R1 (Test Report Drawings) C600/C605/W600/W605, 60" x 99" Fixed Window AW100, 05-25-21
- C600/C605 Two Tone Installation Instructions, 07-10-2023
- C600/C605 One Tone Installation Instructions, 07-10-2023
- W600/W605 Two Tone Installation Instructions, 07-10-2023

As-Tested Installation – Nailing Fin to Wood Blocking

#8 x 1-5/8" Pan Head Wood/Deck Screw (Non-Countersunk) $D_{ws} = (0.322" + .0306")/2 = 0.314"$ (Nominal Screw Head Diameter) $D_{H} = 0.177"$ (Nominal Hole Size, AAMA TIR-A9, Table 11.1) 1-1/2" Minimum Penetration

1/16" thick 6063-T6 Aluminum Nailing Fin

G = 0.55 Minimum SYP 2x Wood Blocking

¼" maximum shim space

ASD Withdrawal

Withdrawal of #8 PH Wood/Deck Screw

W' = 2,850(G²)(D)(Cd)(Cm)(Ct)(Ceg)(Ctn)(L) W' = 2,850 (0.42^2)(0.164'')(1.6)(0.7)(0.7)(1.00)(1.0)(1.50'') W' = 166 lb

Adjustment Factors

Load Duration Factor - Ten Minutes, Cd = 1.6 Moisture Factor - Fabrication > 19% and In-Service > 19%, Cm = 0.7 Temperature Factor - $100^{\circ}F < T \le 125^{\circ}F$, Ct = 0.7 End Grain Factor - No, Ceg = 1.00 Toe Nail Factor - No, Ctn = 1.0

Pull-Over of #8 PH Wood Screw

$$\begin{split} &\mathsf{P}_{nov} = \mathsf{C}_{pov} t_1 \mathsf{F}_{tu1} (\mathsf{D}_{ws}\text{-}\mathsf{D}_h) / 3.0 \\ &\mathsf{P}_{nov} = 1.0 (0.0625'') (30,000 \text{ psi}) (0.314'' - 0.177'') / 3.0 \\ &\mathsf{P}_{nov} = 86 \text{ lb} \end{split}$$

Calculated Capacity of Connection is 86 lb Actual Tested Capacity is 300 lb Safety Factor = 300/86 = 3.5 Typical Safety Factor = 3.0, Additional Capacity = 3.5/3.0 = 16.7% Qualified 10% Increase to Alternate Anchor Capacity Based on Tested Unit

1 - Alternate Installation – #10 Pan Head Wood Screw, Nail Fin to Wood

#10 Pan Head Wood Screw $D_{ws} = (0.373'' + .0357'')/2 = 0.365'' (Nominal Screw Head Diameter)$ $D_{H} = 0.201'' (Nominal Hole Size, AAMA TIR-A9, Table 11.1)$ 1-1/2'' Minimum Penetration

1/16" thick 6063-T6 Aluminum Nailing Fin

G = 0.55 Minimum SYP 2x Wood Blocking

¼" maximum shim space

ASD Withdrawal

Withdrawal of #10 PH Wood Screw

W' = 2,850(G²)(D)(Cd)(Cm)(Ct)(Ceg)(Ctn)(L) W' = 2,850 (0.55^2)(0.190'')(1.6)(0.7)(0.7)(1.00)(1.0)(1.50'') W' = 192 lb

Adjustment Factors

Load Duration Factor - Ten Minutes, Cd = 1.6 Moisture Factor - Fabrication > 19% and In-Service > 19%, Cm = 0.7 Temperature Factor - $100^{\circ}F < T \le 125^{\circ}F$, Ct = 0.7 End Grain Factor - No, Ceg = 1.00 Toe Nail Factor - No, Ctn = 1.0

Pull-Over of #10 PH Wood Screw

$$\begin{split} P_{nov} &= C_{pov} t_1 F_{tu1} (D_{ws}\text{-}D_h) / 3.0 \\ P_{nov} &= 1.0 (0.0625'') (30,000 \text{ psi}) (0.365'' - 0.199'') / 3.0 \\ P_{nov} &= 104 \text{ lb} \end{split}$$

Calculated Capacity of Connection is 104 lb Capacity of Connection at 10% Over is 114 lb (OK per Tested Capacity)

2 - Alternate Installation - #10 Round Washer Head Wood Screw, Nail Fin to Wood

#10 Round Washer Head Wood Screw

D_{ws} = (0.500" + .472")/2 = 0.486" (Nominal Screw Head Diameter)

D_H = 0.201" (Nominal Hole Size, AAMA TIR-A9, Table 11.1)

1-1/2" Minimum Penetration

1/16" thick 6063-T6 Aluminum Nailing Fin

G = 0.55 Minimum SYP 2x Wood Blocking

¼" maximum shim space

ASD Withdrawal

Withdrawal of #10 Wood Screw

W' = 2,850(G²)(D)(Cd)(Cm)(Ct)(Ceg)(Ctn)(L) W' = 2,850 (0.55^2)(0.190'')(1.6)(0.7)(0.7)(1.00)(1.0)(1.50'') W' = 192 lb

Adjustment Factors

Load Duration Factor - Ten Minutes, Cd = 1.6 Moisture Factor - Fabrication > 19% and In-Service > 19%, Cm = 0.7 Temperature Factor - $100^{\circ}F < T \le 125^{\circ}F$, Ct = 0.7 End Grain Factor - No, Ceg = 1.00 Toe Nail Factor - No, Ctn = 1.0

Pull-Over of #10 Round Washer Head Wood Screw

$$\begin{split} P_{nov} &= C_{pov} t_1 F_{tu1} (D_{ws} - D_h) / 3.0 \\ P_{nov} &= 1.0 (0.0625'') (30,000 \text{ psi}) (0.486'' - 0.201'') / 3.0 \\ P_{nov} &= 178 \text{ lb} \end{split}$$

Calculated Capacity of Connection is 178 lb

3 - Alternate Installation – #12 PH Wood Screw, Nail Fin to Wood

- #12 Pan Head Wood Screw
- 1-1/2" Minimum Penetration
- 1/16" thick 6063-T6 Aluminum Nailing Fin
- G = 0.55 Minimum SYP 2x Wood Blocking
- ¼" maximum shim space

ASD Withdrawal

Withdrawal of #12 PH Wood Screw

W' = 2,850(G²)(D)(Cd)(Cm)(Ct)(Ceg)(Ctn)(L) W' = 2,850 (0.55^2)(0.216'')(1.6)(0.7)(0.7)(1.00)(1.0)(1.50'') W' = 219 lb

Adjustment Factors

Load Duration Factor - Ten Minutes, Cd = 1.6 Moisture Factor - Fabrication > 19% and In-Service > 19%, Cm = 0.7 Temperature Factor - $100^{\circ}F < T \le 125^{\circ}F$, Ct = 0.7 End Grain Factor - No, Ceg = 1.00 Toe Nail Factor - No, Ctn = 1.0

Pull-Over of #12 PH Wood Screw

$$\begin{split} &\mathsf{P}_{\mathsf{nov}} = \mathsf{C}_{\mathsf{pov}} t_1 \mathsf{F}_{\mathsf{tu1}} (\mathsf{D}_{\mathsf{ws}}\text{-}\mathsf{D}_{\mathsf{h}}) / 3.0 \\ &\mathsf{P}_{\mathsf{nov}} = 1.0 (0.0625'') (30,000 \text{ psi}) (0.416'' - 0.228'') / 3.0 \\ &\mathsf{P}_{\mathsf{nov}} = 118 \text{ lb} \end{split}$$

Calculated Capacity of Connection is 118 lb Capacity of Connection at 10% Over is 130 lb (OK per Tested Capacity)

4 - Alternate Installation – #10 HWH TEKS Screw, Nailing Fin to Steel Stud

#10 HWH TEKS Screw

Full Penetration +3 Threads

1/16" thick 6063-T6 Aluminum Nailing Fin

Minimum 18 Gauge 33 KSI Steel Stud (Qualifies thicker and stronger steel)

¼" maximum shim space

Allowable Tension of #10-16 TEKS Screw V_a = 885 lb (ESR-1976)

Pull-Over of #10 HWH TEKS Screw in Nail Fin

$$\begin{split} &\mathsf{P}_{nov} = \mathsf{C}_{pov} \mathsf{t}_1 \mathsf{F}_{tu1} (\mathsf{D}_{ws}\text{-}\mathsf{D}_h) / 3.0 \\ &\mathsf{P}_{nov} = 1.0 (0.0625'') (30,000 \text{ psi}) (0.400'' - 0.190'') / 3.0 \\ &\mathsf{P}_{nov} = 131 \text{ Ib} \end{split}$$

Pull-Out of #10 HWH TEKS Screw in Steel Stud

 $P_{not} = 0.85t_c dF_{u2}/3.0$ $P_{not} = 0.85(0.0478")(0.190")(45,000 \text{ psi})/3.0$ $P_{not} = 116 \text{ lb}$

> Calculated Capacity of Connection is 116 lb Capacity of Connection at 10% Over is 128 lb (OK per Tested Capacity)

5 - Alternate Installation – #12 HWH TEKS Screw, Nailing Fin to Steel Stud

#12 HWH TEKS Screw

Full Penetration +3 Threads

1/16" thick 6063-T6 Aluminum Nailing Fin

Minimum 18 Gauge 33 KSI Steel Stud (Qualifies thicker and stronger steel)

¼" maximum shim space

Allowable Tension of #12 HWH TEKS Screw V_a = 1184 lb (ESR-1976)

Pull-Over of #12 HWH TEKS Screw in Nail Fin

$$\begin{split} P_{nov} &= C_{pov} t_1 F_{tu1} (D_{ws} - D_h) / 3.0 \\ P_{nov} &= 1.0 (0.0625'') (30,000 \text{ psi}) (0.415'' - 0.216'') / 3.0 \\ P_{nov} &= 124 \text{ Ib} \end{split}$$

Pull-Out of #12 HWH TEKS Screw in Steel Stud $P_{not} = 0.85t_c dF_{u2}/3.0$

 $P_{not} = 0.85(0.0478")(0.216")(45,000 \text{ psi})/3.0$ $P_{not} = 131 \text{ lb}$

> Calculated Capacity of Connection is 124 lb Capacity of Connection at 10% Over is 136 lb (OK per Tested Capacity)

iotoctok	PROJECT: QUAKER C600/C605/W600/W605 Fixed Windows	BY: TAD	DATE: 04/06/23
UICEICER	PROJECT NO.: P8760.01-122-34-r2	CKD: ARK	SHEET: 14 OF 20

Glass Analysis

nalysis 1 oad Resistance Report					March 22, 2024
Details					
Selected standard:	ASTM E1300	Extended Ba	asic		
Glazing Construc	tion (Doub	le Glazed	Insulating U	nit)	
Exterior Lite Prop	erties (3/16	in. Monolith	ic)		
Construction:	3/16 in. (FI	7)			
Airspace Properti	es				
Thickness:	0.625 in.				
Interior Lite Prop	erties (3/16 i	in. Monolith	ic)		
Construction:	3/16 in. (FI	7)			
Load Resistance					
Short Duration (3	Sec)				
Description	NFL	GTF	LSF	LR	
Exterior Lite Interior Lite	24.1 psf 24.1 psf	3.60 3.60	1/0.500 1/0.500	174 psf 174 psf	
Comparisons					
Scenario 1					
100 psf 3.00 sec	<= 174 psf	_	OK		
Approximate cen	iter of glass de	flection			
Exterior Lite			1.28	in. *	
Interior Lite			1.28	in. *	

Load resistance values are computed in accordance with ASTM E1300-16 Section 6.2 and are based on non-factored load values calculated in a manner consistent with those presented in ASTM E1300-16.

* Deflection value extends beyond deflection chart

Glass makeup is sufficient for 100 psf design pressure.

PROJECT NO.: P8760.01-122-34-r2

Anchorage Spacing Calculation

Punched Opening Anchor Reactions

Roark's Formulas for Stress & Strain (Sixth Ed.) Table 26-1a

Design Pressure (psf) =	100.0							
Window Monly	Decovintion	Anchor	Width, w	Height, h	/ h		R	Anchor Spacing
window Mark	Description	Capacity	(inch)	(inch)	w/n	gamma	(lb/inch)	(in)
Jamb	#10 DIL to to Wood	114.0	60.00	99.00	1.65	0.494	20.57	6
Head	#10 PH to to wood	114.0	60.00	60.00	1.00	0.420	17.50	7
Jamb	#10 Round Head	170.0	60.00	99.00	1.65	0.494	20.57	9
Head	w/ Washer to Wood	170.0	60.00	60.00	1.00	0.420	17.50	10
Jamb	#12 DIL to Wood	120.0	60.00	99.00	1.65	0.494	20.57	6
Head	#12 PH to wood	130.0	60.00	60.00	1.00	0.420	17.50	7
Jamb	#10 TEVC to Matel Child	120.0	60.00	99.00	1.65	0.494	20.57	6
Head	#10 TEKS to Metal Stud	128.0	60.00	60.00	1.00	0.420	17.50	7
Jamb	#12 TEVC to Matel Child	126.0	60.00	99.00	1.65	0.494	20.57	7
Head	#12 TEKS to Metal Stud	136.0	60.00	60.00	1.00	0.420	17.50	8
Design Pressure (psf) =	70.0							
Min days Marsh	Description	Anchor	Width, w	Height, h	() -		R	Anchor Spacing
window Mark	Description	Capacity	(inch)	(inch)	w/n	gamma	(lb/inch)	(in)
Jamb		111.0	60.00	99.00	1.65	0.494	14.40	8
Head	#10 PH to to wood	114.0	60.00	60.00	1.00	0.420	12.25	9
Jamb	#10 Round Head	170.0	60.00	99.00	1.65	0.494	14.40	12
Head	w/ Washer to Wood	178.0	60.00	60.00	1.00	0.420	12.25	15
Jamb	#12 DIL to Wood	120.0	60.00	99.00	1.65	0.494	14.40	9
Head	#12 PH to wood	130.0	60.00	60.00	1.00	0.420	12.25	11
Jamb		120.0	60.00	99.00	1.65	0.494	14.40	9
Head	#10 TEKS to Metal Stud	128.0	60.00	60.00	1.00	0.420	12.25	10
Jamb		126.0	60.00	99.00	1.65	0.494	14.40	9
Head	#12 TEKS to Metal Stud	136.0	60.00	60.00	1.00	0.420	12.25	11
Design Pressure (psf) =	50.0							
	D	Anchor	Width, w	Height, h	a		R	Anchor Spacing
window Mark	Description	Capacity	(inch)	(inch)	w/n	gamma	(lb/inch)	(in)
Jamb	#10 DIL to to Wood	114.0	60.00	99.00	1.65	0.494	10.28	11
Head	#10 PH to to wood	114.0	60.00	60.00	1.00	0.420	8.75	13
Jamb	#10 Round Head	170.0	60.00	99.00	1.65	0.494	10.28	17
Head	w/ Washer to Wood	178.0	60.00	60.00	1.00	0.420	8.75	20
Jamb	112 DIL M	120.0	60.00	99.00	1.65	0.494	10.28	13
Head	#12 PH to wood	130.0	60.00	60.00	1.00	0.420	8.75	15
Jamb	#10 TEVC to Matel Child	120.0	60.00	99.00	1.65	0.494	10.28	12
Head	#10 TEKS to Metal Stud	128.0	60.00	60.00	1.00	0.420	8.75	15
Jamb	#10 TEVC to Matal Ct. 1	126.0	60.00	99.00	1.65	0.494	10.28	13
Head	#12 TEKS to Metal Stud	130.0	60.00	60.00	1.00	0.420	8.75	16

Anchor Spacing is limited to the as tested spacing of 15" on center.

intoctok	PROJECT: QUAKER C600/C605/W600/W605 Fixed Windows	BY:	TAD	DATE: 04/06/23
UICERCER	PROJECT NO.: P8760.01-122-34-r2	CKD:	ARK	SHEET: 16 OF 20

<u>Appendix</u>

Pan Head w/ Phillips Recess

WOOD SCREWS TYPE-17 DEEP THREAD

Nominal	4	4	-	1	1	R	м	C	D		T To		
Diameter & Threads	Head D	iameter	Head Height		Rec Penetrati	Recess Recess Major Penetration Depth Diameter Diameter		Recess Major Threa		Threade	d Length	(Steel screws)	Recess Size
per Inch	Max	Min	Max	Min	Max	Min	Ref	Max	Min	L⊴1"	L>1"	Min	
6-13	0.270	0.256	0.097	0.087	0.080	0.055	0.159	0.142	0.131	Full thread	2/3 thread	21	#2
7-12	0.296	0.281	0.106	0.096	0.089	0.064	0.170	0.158	0.147	Full thread	2/3 thread	28	#2
8-11	0.322	0.306	0.115	0.105	0.097	0.071	0.175	0.169	0.159	Full thread	2/3 thread	37	#2
10-9	0.373	0.357	0.133	0.122	0.113	0.089	0.192	0.194	0.185	Full thread	2/3 thread	55	#2
12-8	0.425	0.407	0.151	0.139	0.124	0.098	0.252	0.230	0.213	Full thread	2/3 thread	64	#3
	_			_				_		_		_	
			Up t	0 5/8"	_					± 0.03			
Toleran	ce on		Over 5	8 to 1.5						± 0.05			<u> </u>
Leng	,th		Over 1.	5 to 2.75	•					± 0.06			
			Over	2.75*						± 0.09			

Description	An externally threaded fastener with a dome-shaped head, cross recess and a single lead thread. The shark has a reduced diameter and a chip cavity cut out where the final several threads end at the tip.								
Applications / Advantages	The deeper thread design offers greater resistance to pull-out forces. Popular in fastening cabinet hardware in locations that do not require the head to countersink. The chip cavity (or auger point) are designed to attach hinges to the edge of hardwood face frames.	Used in environments where corrossion resistance is neccesary. The type-17 point enables the screw to more easily penetrate the material into which it's fastened. Can be used in particle board, wood and some plastics.							
Material	C1018 - 1022 case-hardened steel	18-8 Stainless Steel							
Surface Hardness	Vickers 450 HV minimum								
Case Depth	0.004" - 0.009"	•							
Torque	See values in above table								
Plating	See Appendix-A for plating information	Stainless deep thread screws are usually supplied without additional finish.							

iotoctok	PROJECT: QUAKER C600/C605/W600/W605 Fixed Windows	BY: TAD	DATE: 04/06/23
UICERCER	PROJECT NO.: P8760.01-122-34-r2	CKD: ARK	SHEET: 17 OF 20

WOOD SCREWS

Round Washer Head w/ Square/Phillips Combo Recess

TYPE-17 DEEP THREAD

Nominal Diameter	A Washer Diameter		А		В	1	4	1	P	V	N	1	2	1		Recest
			Head Di- ameter	Total Head Height		Recess Depth		Washer Thickness		Major Diameter		Threaded Length		Size (Square & Phil-		
	Max	Min	Ref	Max	Min	Max	Min	Max	Min	Max	Min	L≤1"	L>1"	lips)		
8	0.376	0.352	0.305	0.120	0.110	0.080	0.065	0.050	0.030	0.174	0.164	Full thread	2/3 thread	#2		
10	0.500	0.472	0.300	0.130	0.118	0.073	0.049	0.060	0.040	0.197	0.183	Full thread	2/3 thread	#2		
	1.1		1	Jp to 5/8"				-	_	1	+0 / -0.0	03	-	1		
	rance on Over 5/8 to 1.5"									+0/-0.0	05					

Length	Over 1.5 to 2.75"	+0 / -0.06	
	Over 2.75 to 5*	+0 / -0.09	10

Description	An externally threaded tastener with a dome-shaped head and an integrally formed washer; a recess that can accomodate either a Phil- lips or Square screwdriver; and a single lead thread. The shank has a reduced diameter and a chip cavity cut out where the final several threads, ending at the tip.						
Applications / Advantages	The deeper thread design offers greater resistance to pull-out forces. The chip cavity (or auger point) enables the fastener to drive— especially in denser woods—without pre-drilling a pilot hole. The head offers a greater bearing surface than a countersunk design. Used to attach surface-mounted door hinges or master lock hasps into dense woods or when attaching two pieces of wood through a pocket hole.						
Material	C1022 case-hardened steel						
Surface Hardness	Rockwell C 45 minimum						
Case Depth	0.004" - 0.009"						
Torque	#8 Diameter: 35 kg/cm minimum #10 Diameter: 50 kg/cm minimum						
Plating	See Appendix-A for plating information						

intoctok	PROJECT: QUAKER C600/C605/W600/W605 Fixed Windows	BY: TAD	DATE: 04/06/23
UICEICER	PROJECT NO.: P8760.01-122-34-r2	CKD: ARK	SHEET: 18 OF 20

Hex & Hex Washer Heads

SELF- TAPPING SCREWS HEAD DIMENSIONS

HEX	& He	x Was	SHER HE	EADS FOR SELF-TAPPING & SELF-DRILLING SCREWS									ASME B18.6.3- 2013*		
		A	w		н		F		U		J		r - / /		
Nominal Size	Width Across Flats		Width Across Corners	Height of Head		Diameter of Washer		Thickness of Washer		Width of Slot		Depth of Slot			
	Max	Min	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min		
4	.188	.181	.202	.060	.049	.243	.225	.019	.011	.039	.031	.036	.025		
6	.250	.244	.272	.093	.080	.328	.302	.025	.015	.048	.039	.046	.033		
7	.250	.244	.272	.093	.080	.328	.302	.029	.017	.048	.039	.054	.040		
8	.250	.244	.272	.110	.096	.348	.322	.031	.019	.054	.045	.066	.052		
10	.312	.305	.340	.120	.105	.414	.384	.031	.019	.060	.050	.072	.057		
12	.312	.305	.340	.155	.139	.432	.398	.039	.022	.067	.056	.093	.077		
14	.375	.367	.409	.190	.172	.520	.480	.050	.030	.075	.064	.101	.083		
1/4 (standard)	.375	.367	.409	.190	.172	.520	.480	.050	.030	.075	.064	.101	.083		
1/4 (special)	.438	.428	.484	.188	.150	.618	.574	.055	.030	.084	.072	.110	.090		
5/16 (special)	.438	.428	.484	.230	.172	.676	.574	.063	.040	.084	.072	.122	.090		
5/16 (standard)	.500	.489	.545	.230	.208	.676	.624	.055	.035	.084	.072	.122	.100		
3/8	.562	.551	.614	.295	.270	.780	.720	.063	.037	.094	.081	.156	.131		
1/2*	.750	.735	.820	.400	.367	1.040	.960	.085	.050	.106	.091	.190	.165		

* Slot dimentions for 1/2-inch diameter hex washer head tapping screws are independient of ASME B18.6.3

PROJECT NO.: P8760.01-122-34-r2

Tap &	p & Clearance Drill Sizes			Tap Drill				Clearance Drill			
Screw Size	Major Diameter	Threads Per Inch	Minor Diameter	75% Thr Aluminum Plas	read for , Brass, & tics	50% Thr Steel, St & I	read for tainless, ron	Close	e Fit	Free	e Fit
				Drill Size	Dec. Eq.	Drill Size	Dec. Eq.	Drill Size	Dec. Eq.	Drill Size	Dec. Eq.
0	.0600	80	.0447	3/64	.0469	55	.0520	52	.0635	50	.0700
1	.0730	64	.0538	53	.0595	1/16	.0625	48	.0760	46	.0810
		72	.0560	53	.0595	52	.0635				
2	0860	56	.0641	50	.0700	49	.0730	43	0890	41	0960
-	.0000	64	.0668	50	.0700	48	.0760	-19	.0070	11	.0700
3	0990	48	.0734	47	.0785	44	.0860	37	1040	35	1100
	.0770	56	.0771	45	.0820	43	.0890	31	.1010		
4	1120	40	.0813	43	.0890	41	.0960	32	1160	30	1285
-	20	48	.0864	42	.0935	40	.0980	52		50	205
5	125	40	.0943	38	.1015	7/64	.1094	30	1285	20	1360
,	.125	44	.0971	37	.1040	35	.1100	30	.1205	27	.1500
6	138	32	.0997	36	.1065	32	.1160	27	1440	25	1495
0	.150	40	.1073	33	.1130	31	.1200	27	.1440	25	.1475
9	1640	32	.1257	29	.1360	27	.1440	19	1605	16	1770
0	.1040	36	.1299	29	.1360	26	.1470	10	.1095	10	.1770
40	4000	24	.1389	25	.1495	20	.1610	0	40(0	-	2040
10	.1900	32	.1517	21	.1590	18	.1695	9	.1960		.2010
		24	.1649	16	.1770	12	.1890				
12	12 .2160	28	.1722	14	.1820	10	.1935	2	.2210	1	.2280
		32	.1777	13	.1850	9	.1960				
		20	.1887	7	.2010	7/32	.2188				
1/4	1/4 .2500	28	.2062	3	.2130	1	.2280	F	.2570	н	.2660
	32	.2117	7/32	.2188	1	.2280					
		18	.2443	F	.2570	J	.2770			0	
5/16	.3125	24	.2614		.2720	9/32	.2812	Р	.3230		.3320
		32	.2742	9/32	.2812	L	.2900				
		16	.2983	5/16	.3125	0	.3320			x	
3/8	.3750	24	.3239	0	.3320	S	.3480	w	.3860		.3970
		32	.3367	11/32	.3438	Т	.3580				
		14	.3499	U	.3680	25/64	.3906				
7/16	.4375	20	.3762	25/64	.3906	13/32	.4062	29/64	.4531	15/32	.4687
		28	3937	Y	.4040	7	.4130				
		13	.4056	27/64	.4219	29/64	.4531				
1/2	5000	20	4387	29/64	4531	15/32	4688	33/64	.5156	17/32	5312
		28	.4562	15/32	.4688	15/32	.4688				
		12	.4603	31/64	.4844	33/64	.5156				
9/16	.5625	18	.4943	33/64	.5156	17/32	.5312	37/64	.5781	19/32	.5938
		24	.5114	33/64	.5156	17/32	.5312				
		11	.5135	17/32	.5312	9/16	.5625				
5/8	.6250	18	.5568	37/64	.5781	19/32	.5938	41/64	.6406	21/32	.6562
		24	5739	37/64	5781	19/32	5938				
11/16	6875	24	6364	41/64	.6406	21/32	.6562	45/64	7031	23/32	7188
		10	6273	21/32	6562	11/16	6875	137 9 1		20/02	
3/4	7500	16	6733	11/16	6875	45/64	7031	49/64	7656	25/32	7812
3/4	.7500	20	6887	45/64	7031	23/32	7188	47704	.7050	25/52	
13/16	8125	20	7512	49/64	7656	25/32	7812	53/64	8791	27/22	8439
13/10	.0123	0	7387	49/64	7656	51/64	7060	33704	.0201	LIIJL	.0430
7/8	8750	14	7874	13/16	8125	53/64	8781	57/64	8906	29/32	9062
110	.0/50	20	8127	53/64	8791	27/22	8/29	57704	.0900	27/32	.9002
45/44	0275	20	.0137	57/64	.0201	20/32	.0430	64/64	0524	21/22	0699
15/16	.93/5	20	.0/02	7/04	.0700	29/3Z	.9062	01/04	.9531	31/32	.9000
	1 000	0	.0400	1/0	.0/50	59/64	.9219	4.4.4.4	1.0154	4.4.00	1 0242
1	1.000	12	.89/8	15/16	.93/5	01/04	.9531	1-1/64	1.0156	1-1/32	1.0313
		20	.9387	61/64	.9531	31/32	.9688				

intoctok	PROJECT: QUAKER C600/C605/W600/W605 Fixed Windows	BY: TAD	DATE: 04/06/23
UICERCER	PROJECT NO.: P8760.01-122-34-r2	CKD: ARK	SHEET: 20 OF 20

Revision Log

Date	Page(s)	Revision(s)
04/06/23	N/A	Original report issue
07/19/23	N/A	Updated to FBC 2023
03/25/24	All	Added glazing analysis per ASTM E1300
	Date 04/06/23 07/19/23 03/25/24	Date Page(s) 04/06/23 N/A 07/19/23 N/A 03/25/24 All