

PROJECT: QUAKER M700 Fixed Windows	BY: TAD DATE: 03/25/24
PROJECT NO.: Q0214.02-122-34-r0	CKD: ARK SHEET: 1 OF 21

Window Installation Analysis

QUAKER WINDOWS & DOORS C700/C705 & W700/W705 Fixed Windows Missile Level D, Wind Zone 3, 60 psf

Report Q0214.02-122-34-r0

Rendered to:

Quaker Windows & Doors P.O. Box 128 504 Highway 63 South Freeburg, MO 65035

Prepared by:

Tanya A. Dolby, P.E. Adam Kunkel

Architectural Testing, Inc. 130 Derry Court York, Pennsylvania 17406 (717) 764-7700

March 25, 2024

Tanya A. Dolby, P.E.
Manager, Engineering Services

Adam Kunkel
Project Engineer

	PROJECT: QUAKER M700 Fixed Windows	BY: TAD	DATE: 03/25/24
•	PROJECT NO.: Q0214.02-122-34-r0	CKD: ARK	SHEET: 2 OF 21

Scope

Architectural Testing, Inc., an Intertek company, was contracted by Quaker Window & Doors to perform installation analysis for M700 Fixed Windows on test report P6494.01-550-44-r1.

The analyses performed satisfy the methods and requirements of the following:

Florida Building Code, Building, 8th Edition (2023). International Code Council, 2023.

ADM1-2020 Aluminum Design Manual. The Aluminum Association, Inc., 2020.

AAMA TIR-A9-14 Design Guide for Metal Cladding Fasteners, Includes 2020 Addendum. American Architectural Manufacturers Association, 2014.

AISI S100-16(2020) North American Specification for the Design of Cold-Formed Steel Structural Members, 2016 Edition (Reaffirmed 2020). American Iron and Steel Institute, 2020.

ICC-ES Report *ESR-1976 ITW Buildex TEKS Self-Drilling Fasteners*. ICC Evaluation Service. 01/2023.

GANA Glazing Manual, 50th Anniversary Edition

ANSI/AWC NDS-2018 National Design Specification (NDS) for Wood Construction with 2018 Supplement. American Wood Council, 2018.

The calculations presented herein are for the integrity of the window installations based on wind load only. The weather tightness of the installation is not addressed by this report. The air/water/structural performance of the individual products is not proven by this report.

PROJECT: QUAKER M700 Fixed Windows	BY: TAD	DATE : 03/25/24
PROJECT NO.: Q0214.02-122-34-r0	CKD: ARK	SHEET: 3 OF 21

Certification of Independence

In accordance with Rule 61G20-3 Florida Administrative Code, Architectural Testing, Inc. hereby certifies the following:

- Architectural Testing does not have, nor does it intend to acquire or will it acquire, a
 financial interest in any company manufacturing or distributing products tested or
 labeled by the agency.
- Architectural Testing is not owned, operated or controlled by any company manufacturing or distributing products it tests or labels.
- Tanya A. Dolby, P.E. and Adam R. Kunkel do not have nor will acquire, a financial interest in any company manufacturing or distributing products for which the reports are being issued.
- Tanya A. Dolby, P.E. and Adam R. Kunkel do not have, nor will acquire, a financial interest in any other entity involved in the approval process of the product.

PROJECT: QUAKER M700 Fixed Windows	BY: TAD DATE: 03/25/24
PROJECT NO.: Q0214.02-122-34-r0	CKD: ARK SHEET: 4 OF 21

Analyses

Summary of Test Results

The following table summarizes the M700 Fixed Windows and the corresponding performance level established by testing.

Table 1 Summary of Test Results

Series/Model	Test Report Number	Product Certification	Size (W x H)	Performance
C700/C705 & W700/W705 Fixed Windows	P6494.01-550-44-r1 (03/09/23)	NI014507.10-R1	60" x 99"	+/- 70 psf

Testing documented in Table 1 was conducted by the Intertek Testing laboratory in Lithia Springs, Georgia (Florida Department of Business & Professional Regulation Test Lab No. TST3892, IAS Accredited Laboratory TL-338).

As-Tested Installation Analysis

The test specimen was secured to a 2x Spruce-Pine-Fir wood buck with #8 x 2" course thread wood/deck screws. The as-tested installation method is evaluated on pages 5 and the established design capacity summarized in Table 2. Alternate anchorage is shown in Table 3 with on center spacings on page 6.

Table 2 As-Tested Anchorage Design Capacities

Installation	Connection	Capacity	Comments
Nailing Fin to Wood	#8 PH Wood Screw	86 lb	 Limited by pull-over 1 ½" minimum penetration G = 0.55 Minimum SPF

PROJECT: QUAKER M700 Fixed Windows	BY: TAD	DATE : 03/25/24
PROJECT NO.: 00214.02-122-34-r0	CKD: ARK	SHEET: 5 OF 21

Anchorage Requirements

#8 x 2" PH Wood/Deck Screw actual test anchor capacity based on tested spacing:

Design Pressure 70.0 psf

Anchor Capacity 180.0 lb (#8 PH Nail Fin to Wood)

P6494.01-550-44-R1	Width, w	Height, h			R	Anchor Spacing
Window Mark	(inch)	(inch)	w/h	gamma	(lb/inch)	(in)
Jamb	60.00	99.00	1.65	0.494	14.40	13
Head	60.00	60.00	1.00	0.420	12.25	15

Calculated alternate anchors are shown for 60 psf design pressure, #10 and #12 fasteners, wood and metal stud substrates.

The alternate anchorage conditions have design capacities which are comparable to or exceeds the design capacity of the as tested anchorage. All anchorage is installed 3" from corners and at the spacing calculated shown on page 6 of 20 for 60 psf Design Load. Maximum shim space between the window frame and surrounding substrate is 1/4" for all conditions. Anchors must be fully shimmed and supported.

Alternate Anchorage Capacities

Table 3 Alternate Anchorage Capacity

Installation	Connection	Capacity	Comments
Nailing Fin	#40 BH Weed Co.	44411	1. Limited by pull-over
to Wood) Wood	2. 1 ½" minimum penetration3. G = 0.55 Minimum SPF	
Nailing Fin	#10 Round Washer Head		1. Limited by pull-over
	Wood Wood Screw 178 lb	178 lb	2. 1 ½" minimum penetration
10 W000			3. G = 0.55 Minimum SPF
Nailing Fin	#12 PH Wood Screw		4. Limited by pull-over
to Wood	#12 PH WOOD SCIEW	130 lb	5. Full penetration +3 threads
10 0000			6. G = 0.55 Minimum SPF
Nailing Ein	#10 HWH TEKS Screw		1. Limited by pull-out
Nailing Fin to Steel	#10 HWH TEKS SCIEW	128 lb	2. Full penetration +3 threads
to steel			3. Min 18 gauge 33 KSI steel
Nailing Fin	#12 HWH TEKS Screw		1. Limited by pull-out
Nailing Fin to Steel	#12 HAND LEKS SCIEM	136 lb	2. Full penetration +3 threads
to steel			3. Min 18 gauge 33 KSI steel

PROJECT: QUAKER M700 Fixed Windows	BY: TAD	DATE : 03/25/24
PROJECT NO.: Q0214.02-122-34-r0	CKD: ARK	SHEET: 6 OF 21

Required Anchor Spacing at 60 psf Design Pressure

Anchorage Requirements

Although the capacities of the alternate anchorages exceed the capacity of the as-tested anchorage, it must be determined the anchorages are not overloaded for the approved window size and design pressures. Calculations presented in page 14 show required spacing for the evaluated anchorage conditions. Results are summarized in the following table.

Table 5 Anchorage Requirements

Substrate	Anchor	Spacing at Jambs (in)	Spacing at Head/Sill (in)
		60 psf	60 psf
	#10 PH Wood Screw	8"	9"
Nailing Fin to Wood	#10 Round Washer Head Wood Screw	12"	15"
	#12 PH Wood Screw	9"	11"
Nailing Fin	#10 HWH TEKS Screw	9"	10"
to Steel	#12 HWH TEKS Screw	9"	11"

If the spacing reported in Table 5 exceeds the as-tested spacing reported in Table 2, the as tested spacing shall govern. Spacing limited to 15" on center maximum.

Glazing analysis was conducted and shown on page 15. Glass is shown to have a Load Resistance of 58 psf design pressure. This is under 60 psf by 3% and is accepted.

PROJECT: QUAKER M700 Fixed Windows	BY: TAD	DATE: 03/25/24
PROJECT NO. : Q0214.02-122-34-r0	CKD: ARK	SHEET: 7 OF 21

Reference Drawings

The reference drawings are the basis of the analysis presented herein and may not reflect the requirements established by this analysis.

- P6494.01-550-44-r1 (Test Report Drawings) C700/C705 and W700/W705, 60" x 99" Fixed Window AW70 psf, 03-09-23
- M3439.01-201-47-R1 (Test Report Drawings) C600/C605/W600/W605, 60" x 99" Fixed Window AW100, 05-25-21 (Reference)
- C700/C705 Two Tone Fixed Impact Installation Instructions, 03-25-2024
- C700/C705 One Tone Fixed Impact Installation Instructions, 03-25-2024
- W700/W705 Two Tone Fixed Impact Installation Instructions, 03-25-2024

PROJECT: QUAKER M700 Fixed Windows	BY: TAD DATE: 03/25/24
PROJECT NO. : Q0214.02-122-34-r0	CKD: ARK SHEET: 8 OF 21

As-Tested Installation - Nailing Fin to Wood Blocking

#8 x 1-5/8" Pan Head Wood/Deck Screw (Non-Countersunk) $D_{ws} = (0.322" + .0306")/2 = 0.314"$ (Nominal Screw Head Diameter) $D_H = 0.177"$ (Nominal Hole Size, AAMA TIR-A9, Table 11.1)

1-1/2" Minimum Penetration

1/16" thick 6063-T6 Aluminum Nailing Fin

G = 0.55 Minimum SYP 2x Wood Blocking

14" maximum shim space

ASD Withdrawal

Withdrawal of #8 Wood Screw

 $W' = 2,850(G^2)(D)(Cd)(Cm)(Ct)(Ceg)(Ctn)(L) \\ W' = 2,850 (0.55^2)(0.164'')(1.6)(0.7)(0.7)(1.00)(1.0)(1.50'') \\ W' = 166 \text{ lb}$

Adjustment Factors

Load Duration Factor - Ten Minutes, Cd = 1.6 Moisture Factor - Fabrication > 19% and In-Service > 19%, Cm = 0.7 Temperature Factor - 100° F < T $\leq 125^{\circ}$ F, Ct = 0.7 End Grain Factor - No, Ceg = 1.00 Toe Nail Factor - No, Ctn = 1.0

Pull-Over of #8 PH Wood Screw

$$\begin{split} P_{nov} &= C_{pov} t_1 F_{tu1} (D_{ws} - D_h) / 3.0 \\ P_{nov} &= 1.0 (0.0625") (30,000 \text{ psi}) (0.314" - 0.177") / 3.0 \\ P_{nov} &= 86 \text{ lb} \end{split}$$

Calculated Capacity of Connection is 86 lb

Actual Tested Capacity is 180 lb

Safety Factor = 180/86 = 2.0

Qualifies 10% Increase to Alternate Anchor Capacity Based on Tested Unit

PROJECT: QUAKER M700 Fixed Windows	BY: TAD DATE : 03/25/24
PROJECT NO.: Q0214.02-122-34-r0	CKD: ARK SHEET: 9 OF 21

1 - Alternate Installation – #10 Pan Head Wood Screw, Nail Fin to Wood

#10 Pan Head Wood Screw

 $D_{ws} = (0.373" + .0357")/2 = 0.365"$ (Nominal Screw Head Diameter)

D_H = 0.201" (Nominal Hole Size, AAMA TIR-A9, Table 11.1)

1-1/2" Minimum Penetration

1/16" thick 6063-T6 Aluminum Nailing Fin

G = 0.55 Minimum SYP 2x Wood Blocking

1/4" maximum shim space

ASD Withdrawal

Withdrawal of #10 PH Wood Screw

 $W' = 2,850(G^2)(D)(Cd)(Cm)(Ct)(Ceg)(Ctn)(L)$

 $W' = 2,850 (0.55^2)(0.190'')(1.6)(0.7)(0.7)(1.00)(1.0)(1.50'')$

W' = 192 lb

Adjustment Factors

Load Duration Factor - Ten Minutes, Cd = 1.6

Moisture Factor - Fabrication > 19% and In-Service > 19%, Cm = 0.7

Temperature Factor - 100°F < T ≤ 125°F, Ct = 0.7

End Grain Factor - No, Ceg = 1.00

Toe Nail Factor - No, Ctn = 1.0

Pull-Over of #10 PH Wood Screw

 $P_{nov} = C_{pov}t_1F_{tu1}(D_{ws}-D_h)/3.0$

 $P_{\text{nov}} = 1.0(0.0625")(30,000 \text{ psi})(0.365" - 0.201")/3.0$

 $P_{nov} = 104 lb$

Calculated Capacity of Connection is 104 lb
Capacity of Connection at 10% Over is 114 lb (OK per Tested Capacity)

PROJECT: QUAKER M700 Fixed Windows	BY: TAD DATE: 03/25/24
PROJECT NO.: Q0214.02-122-34-r0	CKD: ARK SHEET: 10 OF 21

2 - Alternate Installation - #10 Round Washer Head Wood Screw, Nail Fin to Wood

#10 Round Washer Head Wood Screw

 $D_{ws} = (0.500'' + .472'')/2 = 0.486''$ (Nominal Screw Head Diameter)

D_H = 0.201" (Nominal Hole Size, AAMA TIR-A9, Table 11.1)

1-1/2" Minimum Penetration

1/16" thick 6063-T6 Aluminum Nailing Fin

G = 0.55 Minimum SYP 2x Wood Blocking

1/4" maximum shim space

ASD Withdrawal

Withdrawal of #10 Wood Screw

 $W' = 2,850(G^2)(D)(Cd)(Cm)(Ct)(Ceg)(Ctn)(L)$

 $W' = 2,850 (0.55^2)(0.190'')(1.6)(0.7)(0.7)(1.00)(1.0)(1.50'')$

W' = 192 lb

Adjustment Factors

Load Duration Factor - Ten Minutes, Cd = 1.6

Moisture Factor - Fabrication > 19% and In-Service > 19%, Cm = 0.7

Temperature Factor - $100^{\circ}F < T \le 125^{\circ}F$, Ct = 0.7

End Grain Factor - No, Ceg = 1.00

Toe Nail Factor - No, Ctn = 1.0

Pull-Over of #10 Round Washer Head Wood Screw

 $P_{\text{nov}} = C_{\text{pov}} t_1 F_{\text{tu}1} (D_{\text{ws}} - D_{\text{h}}) / 3.0$

 $P_{\text{nov}} = 1.0(0.0625")(30,000 \text{ psi})(0.486" - 0.201")/3.0$

 $P_{nov} = 178 \text{ lb}$

Calculated Capacity of Connection is 178 lb

PROJECT: QUAKER M700 Fixed Windows	BY: TAD	DATE: 03/25/24
PROJECT NO.: Q0214.02-122-34-r0	CKD: ARK	SHEET: 11 OF 21

3 - Alternate Installation – #12 PH Wood Screw, Nail Fin to Wood

#12 Pan Head Wood Screw

1-1/2" Minimum Penetration

1/16" thick 6063-T6 Aluminum Nailing Fin

G = 0.55 Minimum SYP 2x Wood Blocking

1/4" maximum shim space

ASD Withdrawal

Withdrawal of #12 PH Wood Screw

W' = 2,850(G²)(D)(Cd)(Cm)(Ct)(Ceg)(Ctn)(L) W' = 2,850 (0.55^2)(0.216'')(1.6)(0.7)(0.7)(1.00)(1.0)(1.50'') W' = 219 lb

Adjustment Factors

Load Duration Factor - Ten Minutes, Cd = 1.6 Moisture Factor - Fabrication > 19% and In-Service > 19%, Cm = 0.7 Temperature Factor - $100^{\circ}F < T \le 125^{\circ}F$, Ct = 0.7 End Grain Factor - No, Ceg = 1.00 Toe Nail Factor - No, Ctn = 1.0

Pull-Over of #12 PH Wood Screw

$$\begin{split} P_{nov} &= C_{pov} t_1 F_{tu1} (D_{ws} - D_h)/3.0 \\ P_{nov} &= 1.0 (0.0625") (30,000 \text{ psi}) (0.416" - 0.228")/3.0 \\ P_{nov} &= 118 \text{ lb} \end{split}$$

Calculated Capacity of Connection is 118 lb
Capacity of Connection at 10% Over is 130 lb (OK per Tested Capacity)

PROJECT: QUAKER M700 Fixed Windows	BY: TAD	DATE: 03/25/24
PROJECT NO.: Q0214.02-122-34-r0	CKD: ARK	SHEET: 12 OF 21

4 - Alternate Installation - #10 HWH TEKS Screw, Nailing Fin to Steel Stud

#10 HWH TEKS Screw

Full Penetration +3 Threads

1/16" thick 6063-T6 Aluminum Nailing Fin

Minimum 18 Gauge 33 KSI Steel Stud (Qualifies thicker and stronger steel)

1/4" maximum shim space

Allowable Tension of #10-16 TEKS Screw

 $V_a = 885 \text{ lb}$

(ESR-1976)

Pull-Over of #10 HWH TEKS Screw in Nail Fin

 $P_{nov} = C_{pov}t_1F_{tu1}(D_{ws}-D_h)/3.0$

 $P_{\text{nov}} = 1.0(0.0625")(30,000 \text{ psi})(0.400" - 0.190")/3.0$

 $P_{nov} = 131 lb$

Pull-Out of #10 HWH TEKS Screw in Steel Stud

 $P_{not} = 0.85t_c dF_{u2}/3.0$

 $P_{\text{not}} = 0.85(0.0478")(0.190")(45,000 \text{ psi})/3.0$

 $P_{not} = 116 lb$

Calculated Capacity of Connection is 116 lb
Capacity of Connection at 10% Over is 128 lb (OK per Tested Capacity)

PROJECT: QUAKER M700 Fixed Windows	BY: TAD DATE: 03/25/24
PROJECT NO. : Q0214.02-122-34-r0	CKD: ARK SHEET: 13 OF 21

5 - Alternate Installation – #12 HWH TEKS Screw, Nailing Fin to Steel Stud

#12 HWH TEKS Screw

Full Penetration +3 Threads

1/16" thick 6063-T6 Aluminum Nailing Fin

Minimum 18 Gauge 33 KSI Steel Stud (Qualifies thicker and stronger steel)

1/4" maximum shim space

Allowable Tension of #12 HWH TEKS Screw

 $V_a = 1184 \text{ lb}$ (ESR-1976)

Pull-Over of #12 HWH TEKS Screw in Nail Fin

 $P_{nov} = C_{pov}t_1F_{tu1}(D_{ws}-D_h)/3.0$

 $P_{\text{nov}} = 1.0(0.0625")(30,000 \text{ psi})(0.415" - 0.216")/3.0$

 $P_{nov} = 124 lb$

Pull-Out of #12 HWH TEKS Screw in Steel Stud

 $P_{not} = 0.85t_c dF_{u2}/3.0$

 $P_{\text{not}} = 0.85(0.0478")(0.216")(45,000 \text{ psi})/3.0$

 $P_{not} = 131 lb$

Calculated Capacity of Connection is 124 lb
Capacity of Connection at 10% Over is 136 lb (OK per Tested Capacity)

PROJECT: QUAKER M700 Fixed Windows	BY: TAD	DATE : 03/25/24
PROJECT NO.: Q0214.02-122-34-r0	CKD: ARK	SHEET: 14 OF 21

Anchorage Spacing Calculation

<u>Punched Opening Anchor Reactions</u> Roark's Formulas for Stress & Strain (Sixth Ed.) Table 26-1a

Design Pressure (psf) =	60.0							
Window Mark	Description	Anchor Capacity	Width, w (inch)	Height, h (inch)	w/h	gamma	R (lb/inch)	Anchor Spacing (in)
Jamb	#10 PH to to Wood	109.0	60.00	99.00	1.65	0.494	12.34	9
Head	#10 PH to to Wood	109.0	60.00	60.00	1.00	0.420	10.50	10
Jamb	#10 Round Head	170.0	60.00	99.00	1.65	0.494	12.34	14
Head	w/ Washer to Wood	178.0	60.00	60.00	1.00	0.420	10.50	17
Jamb	#10 TEKS to Metal Stud	116.0	60.00	99.00	1.65	0.494	12.34	9
Head	#10 LEKS to Metal Stud	110.0	60.00	60.00	1.00	0.420	10.50	11
Jamb	#10 TEKS to Metal Stud	120.0	60.00	99.00	1.65	0.494	12.34	10
Head	#10 LEKS to Metal Stud	128.0	60.00	60.00	1.00	0.420	10.50	12
Jamb	#12 TEKS to Metal Stud	136.0	60.00	99.00	1.65	0.494	12.34	11
Head	#12 TEKS to Metal Stud	130.0	60.00	60.00	1.00	0.420	10.50	13

Anchor Spacing is limited to the as tested spacing of 15" maximum on center.

PROJECT: QUAKER M700 Fixed Windows	BY: TAD	DATE : 03/25/24
PROJECT NO.: Q0214.02-122-34-r0	CKD: ARK	SHEET: 15 OF 21

Load exceeds LR

Glass Analysis

56.75" x 95.75", 60 psf

Analysis 1

Load Resistance Report

March 22, 2024

Details

Selected standard: ASTM E1300 Extended Basic

Glazing Construction (Double Glazed Insulating Unit)

Exterior Lite Properties (1/4 in. Monolithic)

Construction: 1/4 in. (FT)

Airspace Properties

Thickness: 0.480 in.

Interior Lite Properties (1/4 in. Laminated)

Construction: 1/8 in. (AN) | 0.090 in. (Ionomer) | 1/8 in. (AN)

Load Resistance

Short Duration (3 Sec)

Description	<u>NFL</u>	GTF	LSF	<u>LR</u>
Exterior Lite	29.4 psf	3.80	1/0.500	223 psf
Interior Lite	29.1 psf	1.00	1/0.500	58.2 psf

Comparisons

Scenario 1

60.0 psf 3.00 sec > 58.2 psf Approximate center of glass deflection

Exterior Lite 0.88 in.
Interior Lite 0.84 in.

Notes

Load resistance values are computed in accordance with ASTM E1300-16 Section 6.2 and are based on non-factored load values calculated in a manner consistent with those presented in ASTM E1300-16.

LR = 58.2 psf < 60 psf by 3%, OK

PROJECT: QUAKER M700 Fixed Windows	BY: TAD	DATE: 03/25/24
PROJECT NO.: 00214.02-122-34-r0	CKD: ARK	SHEFT: 16 OF 21

Appendix

Reference Material

#10-16 TEKS Screw References

TABLE 5-FASTENER STRENGTH OF SCREWS^{1, 2, 3, 4, 5}

SCREW	DIAMETER	ALLOWABLE FAST	TENER STRENGTH	NOMINAL FASTENER STRENGTH		
DESIGNATION	(in.)	Tensile, P _{ts} /Ω (lbf)	Shear, P _{ss} /Ω (lbf)	Tensile, Pts (lbf)	Shear, P _{ss} (lbf)	
10-16	0.190	885	573	2654	1718	
12-14	0.216	1184	724	3551	2171	
12-24	0.216	1583	885	4750	2654	
1/4-14	0.250	1605	990	4816	2970	
1/4-28	0.250	1922	1308	5767	3925	

For SI: 1 inch = 25.4 mm, 1 lbf = 4.45 N.

TABLE 22.11 (Spaced Threads)

						6063-T6						
Nominal	D	Aluminum Thickness (Inches)										
Thread Diameter	Nominal Thread Diameter	0.038	0.060	0.072	0.080	0.094	0.125	0.156	0.188	0.250	0.312	0.375
Per Inch	(Inch)	Allowable Pullout (Pounds)										
#8-18	0.1640	53	83	100	132	155	235	350	468	669	835	1004
#10-16	0.1900	61	96	116	153	180	239	372	509	775	968	1163
#12-14	0.2160		110	132	174	204	271	374	530	833	1100	1322
1/4-14	0.2500		127	152	201	236	314	433	614	964	1273	1530
5/16-12	0.3125							1	809	1334	1860	2296
3/8-12	0.3750	1	1					1	971	1601	2232	2755
	6063-T6											
F _U (Tensile	e Ultimate	Strength)		30000	psi		Shading indicates transition region.					
F _Y (Tensile	F _Y (Tensile Vield Strength) 25000 psi											

NOTE 32:

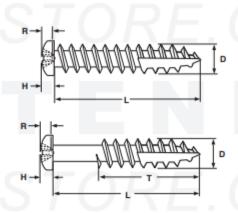
- Each table lists allowable pull-out (internal threads) values. S_F= 3.0 for D ≤ 0.25"; S_F= 2.5 for D ≥ 0.3125". Fastener allowable strength (basic tension and external threads) needs to be checked separately.
 For pilot hole sizes refer to tables 21.1 to 21.7
- Fastener pullout not shown for aluminum thickness less than approximately 2 threads, unless tested at a lesser thickness.
 Multiple fastener connections and embrittlement need to be checked separately.

¹ For tension connections, the least of the allowable pull-out, pullover, and fastener tension strength found in Tables 2, 3, and 5, respectively, must be used for design.

²For shear connection, the lower of the allowable shear (bearing) and the allowable fastener shear strength found in Table 4 and 5, respectively, must be used for

See Section 4.1 for fastener spacing and end distance requirements.
 Nominal strengths are based on laboratory tests

⁵To calculate LRFD values, multiply nominal strength values by the LRFD Φ factor of 0.5.


PROJECT: QUAKER M700 Fixed Windows **BY:** TAD **DATE:** 03/25/24

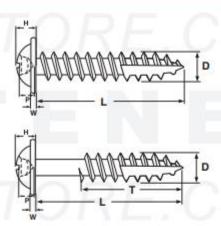
WOOD SCREWS

Pan Head w/ Phillips Recess

TYPE-17 DEEP THREAD

Nominal Diameter & Threads per Inch		4	Н		R		M)	т		Torque	Recess Size
	Head Diameter		Head Height		Recess Penetration Depth		Recess Diameter	Ma Dian		Threade	d Length	Kg/cm (Steel screws)	
	Max	Min	Max	Min	Max	Min Ref	Max	Min	L≤1"	L>1"	Min		
6-13	0.270	0.256	0.097	0.087	0.080	0.055	0.159	0.142	0.131	Full thread	2/3 thread	21	#2
7-12	0.296	0.281	0.106	0.096	0.089	0.064	0.170	0.158	0.147	Full thread	2/3 thread	28	#2
8-11	0.322	0.306	0.115	0.105	0.097	0.071	0.175	0.169	0.159	Full thread	2/3 thread	37	#2
10-9	0.373	0.357	0.133	0.122	0.113	0.089	0.192	0.194	0.185	Full thread	2/3 thread	55	#2
12-8	0.425	0.407	0.151	0.139	0.124	0.098	0.252	0.230	0.213	Full thread	2/3 thread	64	#3
Up to 5/8" Tolerance on Over 5/8 to 1.5"							± 0.03						
		on Over 5/8 to 1.5"							:	± 0.05			
Leng	th		Over 1.	5 to 2.75						± 0.06			
			Over	2.75"			± 0.09						

Description	An externally threaded fastener with a dome-shaped head, cross recess and a single lead thread. The shank has a reduced diameter and a chip cavity cut out where the final several threads end at the tip.								
Applications / Advantages	The deeper thread design offers greater resistance to pull-out forces. Popular in fastening cabinet hardware in locations that do not require the head to countersink. The chip cavity (or auger point) are designed to attach hinges to the edge of hardwood face frames.	Used in environments where corrossion resistance is neccesary. The type-17 point enables the screw to more easily penetrate the material into which it's fastened. Can be used in particle board, wood and some plastics.							
Material	C1018 - 1022 case-hardened steel	18-8 Stainless Steel							
Surface Hardness	Vickers 450 HV minimum								
Case Depth	0.004" - 0.009"								
Torque	See values in above table								
Plating	See Appendix-A for plating information	Stainless deep thread screws are usually supplied without additional finish.							


PROJECT: QUAKER M700 Fixed Windows BY: TAD DATE: 03/25/24

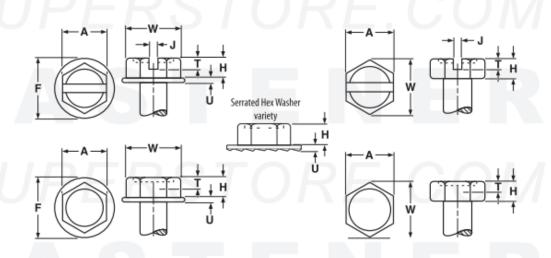
WOOD SCREWS

Round Washer Head w/ Square/Phillips Combo Recess

TYPE-17 DEEP THREAD

Nominal Diameter	1	A	В	-	1	1	P	V	N.)	1		Recess
	Washer Diameter		Head Di- ameter			Recess Depth		Washer Thickness		Major Diameter		Threaded Length		Size (Square & Phil-
	Max	Min	Ref	Max	Min	Max	Min	Max	Min	Max	Min	L≤1"	L>1"	lips)
8	0.376	0.352	0.305	0.120	0.110	0.080	0.065	0.050	0.030	0.174	0.164	Full thread	2/3 thread	#2
10	0.500	0.472	0.300	0.130	0.118	0.073	0.049	0.060	0.040	0.197	0.183	Full thread	2/3 thread	#2
	7		ı	Jp to 5/8"				7			+0 / -0.0	33		V
Tolerance on Length			Ove		+0 / -0.05									
			Ove	+0 / -0.06										
			Ove	+0 / -0.09										

Description	An externally threaded fastener with a dome-shaped head and an integrally formed washer; a recess that can accomodate either a Philips or Square screwdriver, and a single lead thread. The shark has a reduced diameter and a chip cavity cut out where the final several threads, ending at the tip. The deeper thread design offers greater resistance to pull-out forces. The chip cavity (or auger point) enables the fastener to drive—especially in denser woods—without pre-drilling a pilot hole. The head offers a greater bearing surface than a countersunk design. Used to attach surface-mounted door hinges or master lock hasps into dense woods or when attaching two pieces of wood through a pocket hole.						
Applications / Advantages							
Material	C1022 case-hardened steel						
Surface Hardness	Rockwell C 45 minimum						
Case Depth	0.004" - 0.009"						
Torque	#B Diameter: 35 kg/cm minimum #10 Diameter: 50 kg/cm minimum						
Plating	See Appendix-A for plating information						



PROJECT: QUAKER M700 Fixed Windows	BY: TAD	DATE: 03/25/24
PROJECT NO.: Q0214.02-122-34-r0	CKD: ARK	SHEET: 19 OF 21

SELF- TAPPING SCREWS

Hex & Hex Washer Heads

HEAD DIMENSIONS

HEX	& HE	HEX WASHER HEADS FOR SELF-TAPPING & SELF-DRILLING SCREWS										ASME B18.6.3— 2013*	
Nominal Size	Width Across		w		1		F	U		J		т	
			Width Across Corners	Height of Head		Diameter of Washer		Thickness of Washer		Width of Slot		Depth of Slot	
	Max	Min	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min
4	.188	.181	.202	.060	.049	.243	.225	.019	.011	.039	.031	.036	.025
6	.250	.244	.272	.093	.080	.328	.302	.025	.015	.048	.039	.046	.033
7	.250	.244	.272	.093	.080	.328	.302	.029	.017	.048	.039	.054	.040
8	.250	.244	.272	.110	.096	.348	.322	.031	.019	.054	.045	.066	.052
10	.312	.305	.340	.120	.105	.414	.384	.031	.019	.060	.050	.072	.057
12	.312	.305	.340	.155	.139	.432	.398	.039	.022	.067	.056	.093	.077
14	.375	.367	.409	.190	.172	.520	.480	.050	.030	.075	.064	.101	.083
1/4 standard)	.375	.367	.409	.190	.172	.520	.480	.050	.030	.075	.064	.101	.083
1/4 (special)	.438	.428	.484	.188	.150	.618	.574	.055	.030	.084	.072	.110	.090
5/16 (special)	.438	.428	.484	.230	.172	.676	.574	.063	.040	.084	.072	.122	.090
5/16 standard)	.500	.489	.545	.230	.208	.676	.624	.055	.035	.084	.072	.122	.100
3/8	.562	.551	.614	.295	.270	.780	.720	.063	.037	.094	.081	.156	.131
1/2*	.750	.735	.820	.400	.367	1.040	.960	.085	.050	.106	.091	.190	.165

^{*} Slot dimentions for 1/2-inch diameter hex washer head tapping screws are independient of ASME B18.6.3

PROJECT: QUAKER M700 Fixed Windows BY: TAD DATE: 03/25/24

PROJECT NO.: Q0214.02-122-34-r0 **CKD**: ARK **SHEET**: 20 OF 21

T												
Tap &	Clearar	nce Dri	ll Sizes		Tap	Drill			Clearar	nce Drill		
					read for	50% Thi	read for					
Screw	Major	Threads	Minor	Aluminum	, Brass, &	Steel, S	tainless,	Close	e Fit	Free	Fit	
Size	Diameter	Per Inch	Diameter		tics		ron					
				Drill Size	Dec. Eq.	Drill Size	Dec. Eq.	Drill Size	Dec. Eq.	Drill Size	Dec. Eq.	
0	.0600	80	.0447	3/64	.0469	55	.0520	52	.0635	50	.0700	
1	.0730	64	.0538	53	.0595	1/16	.0625	48	.0760	46	.0810	
'	.0730	72	.0560	53	.0595	52	.0635	70	.0700	40	.0010	
2	.0860	56	.0641	50	.0700	49	.0730	43	.0890	41	.0960	
2	.0000	64	.0668	50	.0700	48	.0760	72	.0070	41	.0700	
3	.0990	48	.0734	47	.0785	44	.0860	37	.1040	35	.1100	
3	.0770	56	.0771	45	.0820	43	.0890	31	.1040	33	.1100	
4	.1120	40	.0813	43	.0890	41	.0960	32	.1160	30	.1285	
-	.1120	48	.0864	42	.0935	40	.0980	32	.1100	30	.1203	
	425	40	.0943	38	.1015	7/64	.1094	20	420E	20	1360	
5	.125	44	.0971	37	.1040	35	.1100	30	.1285	29	.1360	
	420	32	.0997	36	.1065	32	.1160	27	1440	25	4.40E	
6	.138	40	.1073	33	.1130	31	.1200	27	.1440	25	.1495	
	47.40	32	.1257	29	.1360	27	.1440	40	4405		4770	
8	.1640	36	.1299	29	.1360	26	.1470	18	.1695	16	.1770	
		24	.1389	25	.1495	20	.1610	_		_		
10	.1900	32	.1517	21	.1590	18	.1695	9	.1960	7	.2010	
		24	.1649	16	.1770	12	.1890					
12	.2160	28	.1722	14	.1820	10	.1935	2	.2210	1	.2280	
		32	.1777	13	.1850	9	.1960	i -				
		20	.1887	7	.2010	7/32	.2188					
1/4	.2500	28	.2062	3	.2130	1	.2280	F	.2570	н	.2660	
	.2555	32	.2117	7/32	.2188	1	.2280	1	.23.0		.2000	
		18	.2443	F	.2570	j	.2770					
5/16	.3125	24	.2614	i i	.2720	9/32	.2812	Р	.3230	Q	.3320	
57.10	.5.25	32	.2742	9/32	.2812	1	.2900	1	.5250	_	.5520	
		16	.2983	5/16	.3125	Q	.3320	w	.3860	x		
3/8	.3750	24	.3239	Q	.3320	S	.3480				.3970	
3/0	.5750	32	.3367	11/32	.3438	T	.3580	"	.5000	^	.3970	
	1	14	.3499	U	.3680	25/64	.3906					
7/16	.4375	20	.3762	25/64	.3906	13/32	.4062	29/64	.4531	15/32	.4687	
// 10	.4373	28	.3937	Y Y	.4040	Z	.4130	27704	.4331	13/32	.4007	
		13	.4056	27/64	.4219	29/64	.4531					
1/2	E000	20				15/32		22/64	E4E4	47/22	.5312	
1/2	.5000		.4387	29/64	.4531		.4688	33/64	.5156	17/32	.5312	
		28 12	.4562 .4603	15/32 31/64	.4688	15/32 33/64	.4688 .5156					
9/16	.5625	18	.4943	33/64	.5156	17/32	.5312	37/64	.5781	19/32	.5938	
9/10	.3023							3//04	.5/61	17/32	.3730	
	_	24	.5114	33/64	.5156	17/32	.5312 .5625					
E / 0	4250	11	.5135	17/32	.5312	9/16		44.16.4	6.406	24/22	4542	
5/8	.6250	18	.5568	37/64	.5781	19/32	.5938	41/64	.6406	21/32	.6562	
44144	4075	24	.5739	37/64	.5781	19/32	.5938	45.44.4	7074	02.420	7400	
11/16	.6875	24	.6364	41/64	.6406	21/32	.6562	45/64	.7031	23/32	.7188	
2	7500	10	.6273	21/32	.6562	11/16	.6875	40.000	7/5/	25.122	70.10	
3/4	.7500	16	.6733	11/16	.6875	45/64	.7031	49/64	.7656	25/32	.7812	
		20	.6887	45/64	.7031	23/32	.7188					
13/16	.8125	20	.7512	49/64	.7656	25/32	.7812	53/64	.8281	27/32	.8438	
		9	.7387	49/64	.7656	51/64	.7969					
7/8	.8750	14	.7874	13/16	.8125	53/64	.8281	57/64	.8906	29/32	.9062	
		20	.8137	53/64	.8281	27/32	.8438					
15/16	.9375	20	.8762	57/64	.8906	29/32	.9062	61/64	.9531	31/32	.9688	
		8	.8466	7/8	.8750	59/64	.9219					
1	1.000	12	.8978	15/16	.9375	61/64	.9531	1-1/64	1.0156	1-1/32	1.0313	
		20	.9387	61/64	.9531	31/32	.9688					

PROJECT: QUAKER M700 Fixed Windows	BY: TAD	DATE: 03/25/24
PROJECT NO. : 00214.02-122-34-r0	CKD: ARK	SHEET: 21 OF 21

Revision Log

<u>Rev. #</u>	<u>Date</u>	Page(s)	Revision(s)
0	03/25/24	N/A	Original report issue