

PRODUCT APPROVAL SUPPORTING CALCULATIONS

Series/Model: F-4500 Swinging Door (OSW)

REPORT NO.: 28233.01-107-16

- RENDERED TO: Jeld-Wen Windows & Doors 3737 Lakeport Blvd Klamath Falls, Oregon
- PREPARED BY: Michael D. Stremmel, P.E.

Molimo, LLC 1410 Eden Road York, Pennsylvania 17402

REVISION 1 DATE: 5/2/2024

This item has been digitally signed and sealed by Michael D. Stremmel, PE on the date adjacent to the seal.

Printed copies of this document are not considered signed and sealed and the signature must be verified on electronic copies.

Michael D. Stremmel, P.E. Senior Project Engineer FL PE 65868 FL REG 37122

It is a violation to alter this document in any way unless acting under the direction of a licensed professional engineer.

SCOPE:

Molimo, LLC was contracted by Jeld-Wen Windows & Doors to evaluate alternate installation methods for their F-4500 Swinging Door (OSW). The evaluation is based on physical testing and product certifications.

Reference standards utilized in this project include:

Florida Building Code. International Code Council.

ANSI/AWC National Design Specification (NDS) for Wood Construction. American Wood Council.

AISI S100 North American Specification for the Design of Cold-Formed Steel Structural *Members*. American Iron and Steel Institute.

ICC-ES Report ESR-1976 ITW Buildex TEKS Self-Drilling Fasteners. ICC Evaluation Service.

NOA 21-0201.06 *Tapcon Concrete and Masonry Anchors with Advanced Threadform Technology*. Miami-Dade County Product Control Section.

The anchorage analysis presented herein does not address the water resistance, water penetration, or air infiltration performance of the installation method or the installed product. In addition, the analyses rely on the assumption that the building substrate is capable of withstanding the incurred loads.

Certification of Independence

In accordance with Rule 61G20-3 Florida Administrative Code, Molimo, LLC hereby certifies the following:

- Molimo, LLC does not have, nor does it intend to acquire or will it acquire, a financial interest in any company manufacturing or distributing products tested or labeled by the agency.
- Molimo LLC s is not owned, operated or controlled by any company manufacturing or distributing products it tests or labels.
- Michael D. Stremmel, P.E. does not have nor will acquire, a financial interest in any company manufacturing or distributing products for which the reports are being issued.
- Michael D. Stremmel, P.E does not have, nor will acquire, a financial interest in any other entity involved in the approval process of the product.

ANALYSES:

Summary of Test Results

Table 1 summarizes the various F-4500 Swinging Door (OSW) products and their corresponding performance levels which have been established by testing or product certification.

Table 1: Summary of Test Results

Series/Model	Test Report Number	Size (W x H)	Performance
Jeld-Wen F-4500 Swinging	Molimo LLC Report No.	71.5" x 78.13"	+50 / -55 psf
Door (OSW)	310-23-118 (9/20/2023)		(Wind Zone 4)

Testing documented in Table 1 was conducted by Molimo LLC of York, Pennsylvania (Florida Department of Business & Professional Regulation Test Lab No. TST11282). The testing documented above is certified by NAMI under certification number NI015729.06 (Expires 9/30/2027).

Product	Test Report Number	Test Standard	Test Results
	Floment Deport No.	ASTM D638 (before and after G155)	-2.2%
SMC Skin	Element Report No.	ASTM D1929	770°F (410°C)
	ESP010982P (2/26/2013)	ASTM D2843	62
		ASTM D635	Class CC2
		ASTM D638 (before	
	Intertek Report No.	and after G155)	+9.5%
White PVC	P6504.01-106-18-R0	ASTM D1929	824°F (440°C)
1476 5110	(8/23/2023)	ASTM D2843	71.8
		ASTM D635	Class CC1
	Intertek Report No.	ASTM D638 (before and after G155)	+9.5%
White PVC	P6504.01-106-18-R0	ASTM D1929	806°F (430°C)
1476 5290	(8/23/2023)	ASTM D2843	72.6
		ASTM D635	Class CC1

Table 2: Plastics Checklist of Test Results

Testing documented in Table 2 was conducted by Element Materials Technology of St Paul, Minnesota and Intertek of York, Pennsylvania (Florida Department of Business & Professional Regulation Test Lab No. TST1558).

The test results listed in Table 2 meet the requirements listed in Miami-Dade County Checklist #0445, *For the Approval of: Plastic and Foam Plastic*.

As-Tested Installation Analysis

For air/water/structural testing, the test specimen was secured to a Spruce-Pin-Fir wood test buck with #8 wood screws (1-1/2" min. embedment) at the head, sill, and jambs. The as tested installation method is evaluated on Pages 6 and 7. These capacities will be used to prove acceptable anchors and substrates for the product.

Alternate Anchorages

Calculations on Pages 9 through 15 determine the design capacity of alternate installation anchorages for the product.

Anchorages Requirements

As-tested spacing must be maintained. It must be determined that the anchorages are not overloaded for the approved product size and design pressures. Calculations presented on Page 16 show the alternate anchorages are acceptable for the established product performance.

Anchorage requirements established by this report are accurately presented in Drawing D1000383.

As-Tested Installation – Through Frame to Wood

- Anchor: #8 x 2-1/2" Wood Screw (1-1/2" min embedment})
- Details: 0.719" thick wood frame (G = 0.42) No shim space was utilized
- Substrate: Spruce-Pine-Fir wood test buck (G = 0.42)

Wood Screw Capacity (Shear)

Z' = <u>111 lb</u>

(See Following Page)

Design Capacity of the Connection = 111 lb

Lateral Design Strength of Wood Connections

<u>Data</u>

<u>Fastener</u>			
Fastener	=	#8 Wo	od Screw
Shank Dia	=	0.164	in.
Root Dia.	=	0.131	in.
F _{yb}	=	90,000	psi
Fastener length	=	2.500	in.
<u>Main Member</u>			

Material	=	5	SPF
G	=	0.42	
θ	=	90	
Fe	=	3,350	psi
Thickness	=	1.500	in.

Calculations

Lateral Bearing Factors

D	=	0.131	in.
$\ell_{\rm m}$	=	1.477	in.
K _θ	=	1.25	
K _D	=	2.20	
R _e	=	1.000	
R _t	=	2.05	

Lateral Design Values, Z

Mode I_m	=	295	lbf
Mode I _s	=	143	lbf
Mode II	=	100	lbf
$Mode III_m$	=	108	lbf
Mode III _s	=	67	lbf
Mode IV	=	78	lbf

Project:	F4500 Swinging Door (OSW)
Comments	s: 1-1/2" min embedment

<u>Side Membe</u>	<u>er</u>		
Material	=	SI	PF
G	=	0.42	
θ	=	90	
F _{es}	=	3,350	psi
Thickness	=	0.719	in.

k_1	=	0.6957	
k_2	=	1.1031	
k_3	=	1.40	
R_d	=	2.20	(Mode $I_{m\nu}$ I_s)
R _d	=	2.20	(Mode II)
R _d	=	2.20	(Mode III _m , III _s , IV)

<== Minimum Value

$C_D =$	1.6
Wet Serv	vice Factor
Fabrication/In-Servio	ce Dry/Dry
C _M =	1.0
In service temperatu	re <mark>T≤100°F</mark>
C _t =	1.0
C _g =	1.0

C_{Δ} =	1.0
Is fastener installed in end grain?	No
C _{eg} =	1.00
Is fastener part of a diaphragm?	No
C _{di} =	1.0
Is fastener toe-nailed?	No
C _{tn} =	1.00

Adjusted Design Value, Z

Z' = <u>107</u> lbf

Alternate Installation – Strap Anchor to Wood

Anchor:	#8 x 1-1/2" Flat head screw securing the strap to the substrate 1/4" max shim space		
Details:	20 gauge (0.033" thick) 33 KSI steel strap anchor w/ two #8 screws securing the strap to the frame 1-1/2" thick wood frame		
Substrate:	Spruce-Pine-Fir 2x Wood Substrate (G = 0.42 min.)		
Wood Screw Capacity (Shear)			
Z' = <u>122</u>	<u>lb</u>	(See Following Page)	
Bending of #8 x 1-1/2" flat head screw			
L = 1/4" (maximum shim space)			
S = π d ³ / 32 = π (0.131") ³ / 32 = 0.000221 in ³			

F_b = (1.3)(0.6 F_y) = (1.3)(0.6)(90,000 psi) = 70,200 psi

 $F_b = M / S = (V) (L/2) / S$

V = 2 S F_b / L = (2)(0.000221 in3)(70,200 psi) / 1/4"

V = <u>124 lb</u>

Bearing Capacity (of #8 screw on frame)

 $P_b = F_e D t / K_D = (3,350 psi)(0.164")(0.719")/(10(0.164) + 0.5) = <u>184 lb</u>$

Bearing Capacity (of strap anchor)

 $P_b = 2.7 \text{ D t F}_{tu} = 2.7(0.164")(0.033")(45,000 \text{ psi}) = 657 \text{ lb}$ $P_{allow} = 657 \text{ lb} / 3.0 = 219 \text{ lb}$

Design Capacity of the Connection = 122 lb

(1.3 for weak axis bending)

(L/2 for guided bending)

Lateral Design Strength of Wood Connections

ata							1
<u>Fastener</u>					Project:	F4500 Swingi	ng Door (OSW)
Fastener	=		od Screw				
Shank Dia	=	0.164	in.		Comment		
Root Dia.	=	0.131	in.	l		1-1/2" min en	nbedment
F _{yb}	=	90,000					
Fastener length	=	1.500	in.				
<u>Main Member</u>				<u>Side Mem</u>	<u>ber</u>		
Material	=		SPF	Material	=		Grade 33 Steel
G	=	0.42		G	=	N/A	
θ	=	90		θ	=	90	
F _e	=	3,350	psi	F _{es}	=	61,850	psi
Thickness	=	1.500	in.	Thickness	=	0.033	in.
<u>alculations</u>							
Lateral Bearin	ig Factor	ſS					
D	=	0.131	in.	k ₁	=	0.8723	
$\ell_{ m m}$	=	1.303	in.	k ₂	=	0.5195	
K _θ	=	1.25		k ₃	=	23.87	
K _D	=	2.20		R _d	=	2.20	(Mode I _m , I _s)
R _e	=	0.054		R _d	=	2.20	(Mode II)
R _t	=	39.48		R _d	=	2.20	(Mode III _m , III _s
				u			
Lateral Design			11.6				
Mode I _m	=	260	lbf				
Mode I _s	=	122	lbf				
Mode II	=	106	lbf				
Mode III _m	=	122	lbf				
Mode III _s	=	77	lbf	<== Minimum Value	2		
Mode IV	=	108	lbf				
<u>Adjustment Fa</u>	<u>ictors</u>						
C _D	=	1.6		\mathbf{C}_{Δ}	=	1.0	
W	/et Servio	ce Factor		Is fastener installed i	n end grain	? No	
Fabrication/In	-Service	Dry/Dry		C_{eg}	=	1.00	
C _M	=	1.0		Is fastener part of a	a diaphragm	l? No	
In service tem	perature	T≤	100°F	C _{di}	=	1.0	
Ct	=	1.0			r toe-nailed	l? No	
C _g	=	1.0		C _{tn}	=	1.00	
	an V-l-	. 7		u.			_
<u>Adjusted Desi</u> Z'	<u>gn Value</u> =	<u>e, Z</u> <u>122</u>	lbf				
L	-	122	101				

axis bending)

Alternate Installation – Through-Frame to Concrete

Anchor:	3/16" Tapcon Anchor - 1-1/4" min embedment - 2-1/2" min edge distance - 4" min anchor spacing - 1/4" max shim space			
Details:	Through the Wood Frame - 1" thick			
Substrate:	ubstrate: 3,000 psi Concrete			
<u>Anchor Ca</u>	pacity (Shear of 3/16" Tapcon)			
P_{ss} / Ω	= <u>181 lb</u>	(NOA-No. 16-1222.06)		
	apacity (of Wood frame)			
$P_b = F_e D t / K_D = (3,350 \text{ psi})(0.170'')(1.00'')/(10(0.170) + 0.5) = 259 \text{ lb}$				
Bending C	apacity (of 3/16" Tapcon)			
L = 1/4'	' (maximum shim space)			
$S = \pi d^3$	$\pi / 32 = \pi (0.170'')^3 / 32 = 0.000482 \text{ in}^3$			
$F_b = (1.3)(0.6 F_y) = (1.3)(0.6)(137,000 \text{ psi}) = 106,860 \text{ psi}$ (1.3 for weak axis b				
$F_b = M$	$F_b = M / S = (V) (L/2) / S$ (L/2 for guided bend			

V = 2 S F_b / L = (2)(0.000482 in3)(106,860 psi) / 1/4"

Design Capacity of the Connection = 181 lb

Alternate Installation – Through-Frame to CMU Block

Anchor:	3/16" Tapcon Anchor - 1-1/4" min embedment - 2-1/2" min edge distance - 4" min anchor spacing - 1/4" max shim space			
Details:	ls: Through the Wood Frame - 1" thick			
Substrate:	ubstrate: CMU Block			
Anchor Ca	<u>apacity</u> (Shear of 3/16" Tapcon)			
P_{ss} / Ω	= <u>135 lb</u>	(NOA-No. 16-1222.06)		
<u>Bearing Capacity</u> (of Wood frame) P _b = F _e D t /K _D = (3,350 psi)(0.170")(1.00")/(10(0.170) + 0.5) = <u>259 lb</u>				
Bending C	<u>apacity</u> (of 3/16" Tapcon)			
L = 1/4" (maximum shim space)				
S = π d ³ / 32 = π (0.170") ³ / 32 = 0.000482 in ³				
$F_b = (1.3)(0.6 F_y) = (1.3)(0.6)(137,000 \text{ psi}) = 106,860 \text{ psi}$ (1.3 for weak axis benc				
$F_b = M / S = (V) (L/2) / S$ (L/2 for guided bending)				
V = 2 S F _b / L = (2)(0.000482 in3)(106,860 psi) / 1/4"				
V = <u>412 lb</u>				

Design Capacity of the Connection = 135 lb

Alternate Installation – Strap Anchor to Concrete

Anchor:	3/16" Tapcon Anchor - 1-1/4" min embedment - 2-1/2" min edge distance - 4" min anchor spacing - 1/4" max shim space			
Details:	20 gauge (0.033" thick) 33 KSI steel strap anchor w/ two #8 screws securing the strap to the frame 1.00" thick wood frame			
Substrate:	3,000 psi Concrete			
Anchor Ca	pacity (Shear of 3/16" Tapcon)			
P_{ss} / Ω =	= <u>181 lb</u>	(NOA-No. 16-1222.06)		
<u>Bearing Capacity</u> (of 3/16" Tapcon on strap anchor) P _b = 2.7 D t F _{tu} = 2.7(0.170")(0.033")(45,000 psi) = 681 lb P _{allow} = 681 lb / 3.0 = <u>227 lb</u>				
<u>Bearing Capacity</u> (of #8 screw on frame) P _b = F _e D t /K _D = (3,350 psi)(0.164")(1.00")/(10(0.164) + 0.5) = <u>257 lb</u>				
$\frac{\text{Bearing Capacity}}{P_b = 2.7 \text{ D t } F_{tu} = 2.7(0.164'')(0.033'')(45,000 \text{ psi}) = 657 \text{ lb}}{P_{allow} = 657 \text{ lb} / 3.0 = 219 \text{ lb}}$				
<u>Bending Capacity</u> (of 3/16" Tapcon) L = 1/4" (maximum shim space) S = π d ³ / 32 = π (0.170") ³ / 32 = 0.000482 in ³				
$F_{b} = (1.3)(0.6 F_{y}) = (1.3)(0.6)(137,000 \text{ psi}) = 106,860 \text{ psi} $ (1.3 for weak axis bending) $F_{b} = M / S = (V) (L/2) / S $ (L/2 for guided bending) $V = 2 S F_{b} / L = (2)(0.000482 \text{ in3})(106,860 \text{ psi}) / 1/4"$				
V = <u>412</u>	$V = \underline{412 \text{ lb}}$			

Design Capacity of the Connection = 181 lb (one concrete anchor per strap)

Alternate Installation – Strap Anchor to CMU Block

Anchor:	3/16" Tapcon Anchor - 1-1/4" min embedment - 2-1/2" min edge distance - 4" min anchor spacing - 1/4" max shim space			
Details:	ails: 20 gauge (0.033" thick) 33 KSI steel strap anchor w/ two #8 screws securing the strap to the frame 1.00" thick wood frame			
Substrate:	CMU Block			
Anchor Cap $P_{ss} / \Omega =$	<u>bacity</u> (Shear of 3/16" Tapcon) • <u>135 lb</u>	(NOA-No. 16-1222.06)		
<u>Bearing Capacity</u> (of 3/16" Tapcon on strap anchor) $P_b = 2.7 \text{ D t } F_{tu} = 2.7(0.170")(0.033")(45,000 \text{ psi}) = 681 \text{ lb}$ $P_{allow} = 681 \text{ lb } / 3.0 = 227 \text{ lb}$				
<u>Bearing Capacity</u> (of #8 screw on frame) P _b = F _e D t /K _D = (3,350 psi)(0.164'')(1.00'')/(10(0.164) + 0.5) = <u>257 lb</u>				
P _b = 2.7	<u>pacity</u> (of #8 screw on strap anchor) D t F _{tu} = 2.7(0.164")(0.033")(45,000 psi) = 657 557 lb / 3.0 = <u>219 lb</u>	7 lb		
<u>Bending Capacity</u> (of 3/16" Tapcon) L = 1/4" (maximum shim space) S = π d ³ / 32 = π (0.170") ³ / 32 = 0.000482 in ³				
$F_{b} = (1.3)(0.6 F_{y}) = (1.3)(0.6)(137,000 \text{ psi}) = 106,860 \text{ psi} $ (1.3 for weak axis bend $F_{b} = M / S = (V) (L/2) / S $ (L/2 for guided bending $V = 2 S F_{b} / L = (2)(0.000482 \text{ in3})(106,860 \text{ psi}) / 1/4"$ $V = \underline{412 \text{ lb}}$				

Design Capacity of the Connection = 135 lb (one concrete anchor per strap)

Alternate Installation – Strap Anchor to Wood (Cap Installation)

- Anchor: Two #8 x 1-1/2" Flat head screw securing the strap to the substrate
- Details: 20 gauge (0.033" thick) 33 KSI steel strap anchor w/ two #8 screws securing the strap to the frame 1.00" thick wood frame 1/4" max shim space
- Substrate: Spruce-Pine-Fir 2x Wood Substrate (G = 0.42 min.)

Wood Screw Capacity (Withdrawal)

W' = 1.6(82 lb/in)(1.5 in) = <u>197 lb</u>

Pull-over Capacity (of #8 screw on strap)

 $P_{nov} = 1.5 \text{ t d } F_{tu} = 1.5 (0.033'')(0.332'')(45,000 \text{ psi}) = 739 \text{ lb}$

 $P_{allow} = 739 \text{ lb} / 3.0 = 246 \text{ lb}$

Bearing Capacity (of #8 screw on frame)

 $P_b = F_e D t / K_D = (3,350 \text{ psi})(0.164")(1.00")/(10(0.164) + 0.5) = 257 \text{ lb}$

Bearing Capacity (of #8 screw on strap anchor)

P_b = 2.7 D t F_{tu} = 2.7(0.164")(0.033")(45,000 psi) = 657 lb

P_{allow} = 657 lb / 3.0 = <u>219 lb</u>

Design Capacity of the Connection = 197 lb (one screw)

Design Capacity of the Connection = 394 lb (two screws)

28233.01-107-16 F-4500 Swinging Door (OSW) 5/2/2024 Page 15 of 16

Anchorage Requirements

Series/Model:	F-4500 Swinging Door (OSW)
Test Unit Size:	71-1/2" x 78-1/8"
Design Pressure:	+50.0 / -55.0 psf

Through-Frame Installation Method

Through frame installation method is validated by the test

Through Frame Anchor Capacity = 111 lb / anchor

Alternate Installation Methods

Strap Anchor to Wood = 122 lb / anchor

Through-Frame to Concrete = 181 lb / anchor

Through-Frame to CMU Block = 135 lb / anchor

Strap Anchor to Concrete = 181 lb / anchor

Strap Anchor to CMU Block = 135 lb / anchor

Strap Anchor to Wood (Cap Installation) = 197 lb / anchor

Minimum Alternate Installation Capacity = 122 lb / anchor

122 lb > 111 lb

Alternate Anchorages OK at tested spacing

Revision Log

Rev. #	Date	Page(s)	Revision(s)
0	3/21/2024	All	Original Report Issue
1	5/2/2024	Page 4	Updated Plastic Checklist test report information to include additional plastic components